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Abstract—We introduce an efficient distributed implementa-
tion of nearest neighbour mean shift clustering (NNMS). The
computationally intensive nature of NNMS has so far restricted
its application to complex data sets where a flexible clustering
with non-ellipsoidal clusters would be beneficial. A parallel
implementation of the standard serial NNMS algorithm on its
own brings insufficient performance gains so we introduce two
further algorithmic improvements: a normal scale (NS) choice of
the optimal number of nearest neighbours, and locality sensitive
hashing (LSH) to approximate nearest neighbour searches. Com-
bining these improvements into a single distributed algorithm
DNNMS offers the potential for an efficient method for Big Data
Clustering.

Keywords: Big Data Clustering, gradient ascent estimation, k-
means, locality sensitive hashing LSH, normal scale, unsupervised
learning

I. INTRODUCTION

The goal of clustering (or unsupervised learning) is to assign

cluster membership to unlabelled candidate points where the

number and location of these clusters are unknown. We focus

on the class of modal clustering methods where clusters are

defined in terms of the local modes of the probability density

function which generates the data. The most well-known

modal clustering method is the k-means clustering. As the

k-means clustering is based on the normal mixture densities,

it is restricted to finding ellipsoidal clusters which can be

inappropriate for complex data sets. Mean shift clustering is

a generalisation of the k-means clustering where it computes

arbitrarily shaped clusters as defined as the basins of attraction

to the local modes created by the density gradient ascent paths

[1].

To compute these gradient ascent paths, nearest neighbour

methods are well-suited as they adapt to the local data

structure. Current nearest neighbour mean shift clustering

NNMS algorithms contain computational bottlenecks posed

by a multiple pass grid based search for the optimal number

of nearest neighbours, and exact nearest neighbour searches.

We propose a new algorithm DNNMS which resolves these

computational inefficiencies: (a) an efficient normal scale (NS)

or ‘rule of thumb’ choice of the nearest neighbours which

avoids a grid search, (b) locality sensitive hashing (LSH) for

approximate nearest neighbour searches to replace the exact

nearest neighbour calculations, and (c) a distributed platform

implementation.

II. METHODS

A. Mean shift clustering

The mean shift method, introduced by [1], for a d-

dimensional point x, generates a sequence of points

{x0,x1, . . . } which follows the gradient density ascent paths

using the recurrence relation

xj+1 =
1

k

∑
Xi∈k-nn(xj)

Xi (1)

where X1, . . . ,Xn is a random sample drawn from a common

density f , the k nearest neighbours of x are k-nn(x) = {Xi :
‖x−Xi‖ ≤ δ(k)(x)} as δ(k)(x) is the k-th nearest neighbour

distance, and x0 = x. Eq. (1) gives the mean shift method

its name since the current iterate xj is shifted to the sample

mean of its k nearest neighbours for the next iterate xj+1. The

convergence of the sequence {x0,x1, . . . } to a local mode

for the kernel version of Eq. (1) for a wide class of kernels

was established by [2] for fixed bandwidths. This convergence

remains valid when the fixed bandwidth is replaced with a

nearest neighbour distance which decreases as the iteration

number increases.

The gradient ascent paths towards the local modes produced

by Eq. (1) form the basis of Algorithm 1, our nearest neighbour

mean shift clustering method NNMS. The inputs to the NNMS

are the data sample X1, . . . ,Xn and the candidate points

x1, . . . ,xm which we wish to cluster (these can be the same

as X1, . . . ,Xn, but this is not required); and the tuning

parameters: the number of nearest neighbours k, the tolerance

under which subsequent iterations in the mean shift update

are considered to be convergent ε1, the maximum number

of iterations jmax, the tolerance under which two cluster

centres are considered to form a single cluster ε2, and the

minimum cluster size smin. The output are the cluster labels

of the candidate points {c(x1), . . . , c(xm)}. There are three

main sub-routines to Algorithm 1. Lines 1–6 correspond to

the gradient ascent paths in Eq. (1) which are iterated until

subsequent iterates are less than ε1 apart or the maximum

number of iterations jmax are reached. The output from these

lines are the final iterates x∗
1, . . . ,x

∗
m. Lines 7–8 concern

merging the final iterates within ε2 distance of each other into

a single cluster, creating an initial clustering of x∗
1, . . . ,x

∗
m.

In Lines 9–13, if the smallest cluster is less than the minimum
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cluster size smin, then it is iteratively merged into next nearest

cluster, to produce cluster labels c(x∗
1), . . . , c(x

∗
m). Line 14

assigns these cluster labels to the original data x1, . . . ,xm.

Algorithm 1 NNMS – Nearest neighbour mean shift cluster-

ing, with exact k-nn

Input: {X1, . . . ,Xn}, {x1, . . . ,xm}, k, ε1, ε2, jmax, smin

Output: {c(x1), . . . , c(xm)}
/* Compute gradient ascent paths */

1: for � := 1 to m do
2: j := 0; x�,0 := x�;

3: x�,1 := mean of k-nn of x�,0;

4: while ‖x�,j+1,x�,j‖> ε1 or j < jmax do
5: j := j + 1; x�,j+1 := mean of k-nn of x�,j ;

6: x∗
� := x�,j ;

/* Create clusters by merging near final iterates */

7: for �1, �2 := 1 to m do
8: if ‖x∗

�1
− x∗

�2
‖≤ ε2 then c(x∗

�1
) := c(x∗

�2
);

/* Merge small clusters */

9: C∗ := cluster with minimum cardinality;

10: while card(C∗) < smin do
11: C ′ := nearest other cluster to C∗;

12: for x∗
� ∈ C∗ do c(x∗

� ) := c(C ′);
13: C∗ := cluster with minimum cardinality;

14: for � := 1 to m do c(x�) := c(x∗
� );

B. Normal scale choice of the number of nearest neighbours

The critical tuning parameter for mean shift clustering

is the choice of the number of nearest neighbours k. The

pioneering work of [3], [4] established the oracle local and

global squared error optimal selectors for nearest neighbour

density estimators, though these authors did not consider

data-based selectors. A data-based grid search to minimise

clustering quality indices, such as the Silhouette index, was

considered by [5]. Our proposed normal scale or ‘rule of

thumb’ selector is

kNS = v0[4/(d+ 4)]d/(d+6)n6/(d+6) (2)

where v0 = πd/2Γ((d + 2)/d)) is the hyper-volume of the

d-dimensional unit ball. The derivation of Eq. (2) is given in

[6], which follows the assertion that tuning parameter selection

based on the density gradient rather than on the density itself

is more suitable for mean shift clustering [7]. The complexity

of kNS is O(1) which is in contrast with O(n) grid searches

for selecting an optimal k since the number of possible search

values is usually set to be proportional to n.

C. Approximate nearest neighbours with locality sensitive
hashing

The most computationally intensive step in the NNMS is

the computation of the k nearest neighbours, rather than the

selection of the number of nearest neighbours. For each of

the candidate points, this requires computing and sorting the

distances ‖Xi − xj‖, i = 1, . . . , n, j = 1, . . . ,m, which is

O(mn log n). For the usual case where m is the same order

as n, this implies that mean shift clustering with exact nearest

neighbours is infeasible for large sample sizes.
One promising complexity reduction approach relies on

computing approximate nearest neighbours rather than exact

neighbours. Amongst these, locality sensitive hashing (LSH),

introduced by [8], [9], is a probabilistic method based on a

random scalar projection of multivariate data point x

L(x;w) = (ZTx+ U)/w

where Z ∼ N(0, Id) is a standard d-variate normal random

variable and U ∼ Unif(0, w) is a uniform random variable

on [0, w), w > 0. A hash table whose buckets are based on

the integer values �L(Xi;w)�, i = 1, . . . , n, is constructed.

Due to the statistical properties of the normal distribution,

close points in the original multivariate space tend to fall in

the same bucket and distant points tend to fall into different

buckets in the hash table, as verified by [10]. Larger values

of w imply fewer buckets with more accurate preservation

of characteristics of Xi, whereas smaller values of w imply

more buckets with less accuracy. We prefer to parametrise

the LSH by the number of buckets M in the hash table. So

we set w = 1 without loss of generality Li ≡ L(Xi; 1).
These scalar projections are sorted into their order statistics

L(1) < · · · < L(n), and their range is divided into M
partition intervals of width w = (L(n) − L(1))/M where

Ij = [L(1) + w(j − 1), L(1) + wj], j = 1, . . . ,M . The hash

value of x is the index of the interval in which L(x; 1) falls

H(x) = j1{L(x; 1) ∈ Ij} (3)

where 1{·} is the indicator function. To search for approximate

nearest neighbours, the reservoir of potential nearest neigh-

bours is set to the bucket which contains the hash value. This

reservoir is enlarged if necessary by concatenating the adjacent

buckets. The approximate k nearest neighbours to x are the

k nearest neighbours drawn only from the reduced reservoir

R(x): k-ñn(x) = {Xi ∈ R(x) : ‖x − Xi‖ ≤ δ(k)(x)}
where δ(k)(x) is the nearest neighbour distance to x. The

approximation error in the nearest neighbours to x induced

by searching in R(x) rather than the full data set is proba-

bilistically controlled, see [10].
Algorithm 2 is the NNLSH, an approximate nearest neigh-

bour search with LSH with the hash function provided by

Eq. (3). The inputs are the data sample X1, . . . ,Xn, the

candidate points x1, . . . ,xm, and the tuning parameters: the

number of nearest neighbours k and the number of buckets

in the hash table M . In Line 1, the hash table is created by

applying the LSH to the data values X1, . . . ,Xn. In Lines

2–6, for each candidate point x�, the approximate k nearest

neighbours k-ñn(x�) are computed from within the reservoir

R(x�).
The proposal where the NNLSH is substituted into the

NNMS was made by [11], which reduces the complexity to

O((mn/M) log(n/M)). The number of buckets M is a crucial

tuning parameter. Despite intense interest in the LSH [12],

there do not yet exist optimal methods for selecting the number
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Algorithm 2 NNLSH – Approximate k-nn with LSH

Input: {X1, . . . ,Xn}, {x1, . . . ,xm}, k,M
Output: {k-ñn(x1), . . . , k-ñn(xm)}
/* Create hash table with M buckets */

1: for i := 1 to n do Hi := H(Xi);
/* Search for approx nn in adjacent buckets */

2: for � := 1 to m do
3: R(x�) := {Xi : Hi = H(x�), i ∈ {1, . . . , n}}
4: while card(R(x�)) < k do
5: R(x�) := R(x�) ∪ adjacent bucket;

6: k-ñn(x�) := k-nn from R(x�) to x�;

of buckets, so we will examine its heuristic performance in the

next section.

Implementing the approximate NNMS in a distributed sys-

tem with a master processor and N slave processors fur-

ther reduces the complexity to O(mn/(MN) log(n/(MN))).
This is our proposed DNNMS in Algorithm 3. Its inputs

and outputs are the same as for Algorithm 1. For the j-th

iteration, the gradient ascent paths are collated in an m × d
matrix xj = [x1,j ; . . . ;xm,j ]. In Lines 1–6, these are iterated

until a global convergence ‖xj+1 − xj‖≤ ε2 ≡ ‖x1,j+1 −
x1,j‖, . . . , ‖xm,j+1 − xm,j‖≤ ε2 or the maximum number

of iterations is exceeded j > jmax. Some redundant calcu-

lations are performed here whenever some of the x�,j have

already converged, but this form of computation is required

for effective MapReduce parallelisation [13]. The MapReduce

paradigm is most efficient if the serial algorithms are re-

designed from iterating over each candidate point to treating

all candidates simultaneously. Lines 7–14 for cluster merging

from Algorithm 1 are reused without major modification as

MapReduce is not required here.

Algorithm 3 DNNMS – Distributed nearest neighbour mean

shift clustering, with approximate k-nn using LSH

Input: {X1, . . . ,Xn}, {x1, . . . ,xm}, k, ε1, jmax, ε2,
smin,M
Output: {c(x1), . . . , c(xm)}
/* Compute gradient ascent paths */

1: j := 0; x0 := [x1,0; . . . ;xm,0];
2: x1 := mean of k-ñn of {X1, . . . ,Xn} to x0

3: while ‖xj+1 − xj‖> ε1 or j < jmax do
4: j := j + 1;

5: xj+1 := mean of k-ñn of xj ; /* use Algorithm 2 */

6: x∗ := [x1,j ; . . . ;xm,j ];
7: Same as Lines 7–14 in Algorithm 1;

III. RESULTS

A. Serial clustering for simulated multivariate data

We evaluate the clustering performance of our proposed

nearest neighbour mean shift clustering NNMS (Algorithm 1)

with the normal scale choice kNS. An alternative nearest

neighbour median shift clustering NNMS2, where the sample

mean of the k nearest neighbours is replaced by a component-

wise sample median, and the choice of k is based on a grid

search to minimise the Silhouette index [5]. The kernel mean

shift clustering, with a normal kernel and the plug-in selector

from [7] is labelled as KMS. For these mean shift methods,

we set the other tuning parameters as follows: the mean shift

iteration tolerance ε1 is 0.005 times the maximum marginal

data range, the maximum number of mean shift iterations is

jmax = 100, the cluster merging tolerance is ε2 = 10ε1,

and minimum cluster size is smin = 0.05n = 50. The ‘gold

standard’ parametric clustering method is the k-means normal

mixture based method with a BIC procedure for selecting an

optimal number of clusters [14], labelled KM. We restrict

ourselves to this small number of clustering methods as these

are conveniently available as public R packages: NNMS2 in

clues [5], KMS in ks [15] and KM in mclust [16].

We examine the d-dimensional 4-crescent density as defined

in [6]. Fig. 1(a) displays the scatter plot of n = 1000 from the

4-crescent for d = 5. There are four crescent saddle-shaped

clusters, with the two smaller clusters in the lower right posing

particular difficulty to separate cleanly. The nearest neighbour

methods NNMS (Fig. 1(b)) and NNMS2 (Fig. 1(c)) are able

to correctly locate the 4 crescent clusters, whereas the kernel

mean shift KMS (Fig. 1(d)) and k-means KM (Fig. 1(e)) both

produce 10 clusters by splitting the 4 main clusters into smaller

clusters.

The box plots of the Adjusted Rand Index (ARI) from 100

trials of n = 1000 random samples in Fig. 1(f) indicate that

all three mean shift methods give higher ARI values than k-

means (KM). Values of ARI close to one indicate closely

matched cluster labellings, and values close to and less than

zero indicate mismatched cluster labellings [17]. Whilst KMS

and NNMS2 perform well, NNMS performs overall the best.

We note that NNMS2 requires a multiple pass grid search to

choose the number of nearest neighbours, whereas NNMS can

achieve similar performance with a single calculation of kNS.

Table I shows the numerical performance measures of the

clustering methods. The NNMS has the highest mean of and

the smallest spread of the ARI values. Since execution times

are highly dependent on the system utilised, we normalise

these execution times by the mean NNMS execution time.

The ratios for the other clustering methods are greater than

1, indicating that the grid-based search of the number of

nearest neighbours for the NNMS2 and of the number of

mixture components for the KM, and the dense nature of the

kernel mean shift KMS leads to computational bottlenecks in

comparison to the NNMS.

TABLE I
PERFORMANCE MEASURES OF THE CLUSTERING METHODS FOR 100

TRIALS OF n = 1000 SAMPLES

Clustering method
NNMS NNMS2 KMS KM

ARI 0.99±0.01 0.87±0.14 0.68±0.09 0.61±0.07
Execution time 1.00±0.24 1.98±0.71 3.48±0.36 12.41±0.23
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(a) RGB (b) Spatial-range

Fig. 3. Colour image representations. (a) RGB image 481×321 pixels. (b)
Scatter plot of n = 154401 transformed (x, y, L∗, u∗, v∗) spatial-range
values.

in Fig. 4(a) is the NNMS with exact nearest neighbours. This

segmented image offers a considerable reduction in image

complexity, whilst is able to detect the centres of the flowers

including some of the fine granular structure, the contours

of the outer edge of the petals and some internal shading,

and differences in the background foliage. Due to the random

nature of the LSH projections to approximate the nearest

neighbours in the DNNMS, these clusters are less compact

and more diffuse than those in the NNMS where the LSH

projections are not used. For the DNNMS-200 in Fig. 4(b)

with approximate nearest neighbours with M = 200 buckets,

some finer details are more visible than without LSH. For the

DNNMS-500 and the DNNMS-1000 in Fig. 4(c–d), the yellow

flower centres are less clearly delimited from the petals, and

there is considerable bleeding of the petals into the foliage.

We observe that it is a coincidence that M = 200 buckets

is a suitable choice as it is also in Fig. 2 and that further

investigation is required for its optimal choice in general.

(a) NNMS (1 night) (b) DNNMS-200 (20 min)

(c) DNNMS-500 (13 min) (d) DNNMS-1000 (10 min)

Fig. 4. Colour image segmentation using nearest neighbour mean shift
clustering. (a) NNMS with serial exact nearest neighbours. (b–d) DNNMS-
M with distributed approximate nearest neighbours using localilty sensitive
hashing with M = 200, 500 and 1000 buckets. The execution times are 1
night, 20, 13 and 10 minutes respectively.

The Berkeley Segmentation Dataset and Benchmark pro-

vides human expert segmentations of their images for com-

parisons. In Fig. 5(a–b) are two such edge detections made

by Users #1107 and #1123. User #1107 focuses on seg-

menting the background foliage and the overall flower shape,

whilst ignoring the detail of the flower petals, whereas User

#1123 concentrates on segmenting the individual petals in

the foreground. We focus on the NNMS and the DNNMS-

200 (Fig. 5(c–d)), as the DNNMS-500 and the DNNMS-

1000 (Fig. 5(e–f)) give insufficient quality of edge detection.

Both the NNMS and the DNNMS-200 are able to segment,

in a single process with a single set of tuning parameters,

simultaneously the background foliage and foreground petal

shapes, providing an automatic segmentation which combines

the results of two human experts focusing on different areas

of the image.

(a) User #1107 (b) User #1123

(c) NNMS (1 night) (d) DNNMS-200 (20 min)

(e) DNNMS-500 (13 min) (f) DNNMS-1000 (10 min)

Fig. 5. Edge detection of segmented images. (a–b) Two human experts:
users #1107 and #1123. (c) NNMS with serial exact nearest neighbours. (d–f)
DNNMS-M with distributed approximate nearest neighbours using localilty
sensitive hashing with M = 200, 500 and 1000 buckets.

IV. CONCLUSION

We have introduced several improvements to the standard

nearest neighbour mean shift clustering algorithm. The first

is a single pass normal scale selector for the optimal number

of nearest neighbours. The second is an approximate nearest

neighbour search via locality sensitive hashing. The third is

an implementation on a distributed computing ecosystem. We

demonstrated that these improvements greatly decrease the

execution time whilst maintain the quality of clustering of

the exact mean shift clustering. These improvements render

it possible to apply mean shift for Big Data Clustering in the

near future. To achieve this, further refinement of the crucial
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tuning parameters, i.e. the number of nearest neighbours and

the number of buckets in the locality sensitive hashing for

approximate nearest neighbours, is required.
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