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Abstract

Progress in selection of smoothing parameters for kernel density estimation has been much

slower in the multivariate than univariate setting. Within the context of multivariate density

estimation attention has focused on diagonal bandwidth matrices. However, there is evidence

to suggest that the use of full (or unconstrained) bandwidth matrices can be beneficial. This

paper presents some results in the asymptotic analysis of data-driven selectors of full

bandwidth matrices. In particular, we give relative rates of convergence for plug-in selectors

and a biased cross-validation selector.
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1. Introduction

The choice of smoothing parameters is a problem of fundamental importance in
kernel density estimation and related areas. Bandwidth selection for univariate
kernel density estimation is the simplest form of this problem, and has been the
subject of considerable research. Substantial advances been made leading to the
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development of bandwidth selectors which combine good practical performance with
excellent asymptotic properties. See [4] for an overview. Progress in the case of
multivariate case has been much slower. Nonetheless, the selection of bandwidth
matrices is an important problem because of the utility of multivariate kernel density
estimators in areas such as data visualization, nonparametric discriminant analysis
and goodness of fit testing.
Successful approaches to univariate bandwidth selection, such as plug-in and

cross-validation methods, can in principle be transferred to the multivariate setting.
However, analysis of these techniques in more than one dimension is not entirely
straightforward, at least in part because there is no univariate analogue to the
multivariate issue of kernel orientation to the coordinate axes. It follows that
multivariate bandwidth selection can be significantly simplified by constraining the
bandwidth matrix to be diagonal. Several authors have studied data-driven choice of
diagonal bandwidth matrices, and plug-in [12] and cross-validation [7] selectors have
been developed. However, the lack of flexibility in this type of bandwidth matrix can
have an adverse effect on the performance of the resulting density estimator, even if
the data are pre-sphered. Consider, for example, the bivariate normal mixture
density displayed in Fig. 1. We conducted a simulation study in which 400 data sets
of size 100, and 400 of size 1000, were generated from this target density. Kernel
density estimates were obtained using a 2-stage diagonal plug-in bandwidth matrix,
and a 2-stage full plug-in bandwidth matrix. (See Section 2 for a description of this

ARTICLE IN PRESS

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 1. Contour plot for the normal mixture
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type of bandwidth selector.) The mean integrated squared error for the estimates
using the diagonal bandwidth matrix was reduced by over 25% for the smaller
sample size, and by more than 38% for the larger sample size, by using the full
bandwidth matrix approach. Sphering the data does not help the diagonal
bandwidth matrix estimator in this case because the overall covariance matrix of
the target density is diagonal. Further examples of the advantages of using full
bandwidth matrices with certain types of target density are supplied in the simulation
study and real data analysis in [2]. The remarks of Wand and Jones [11] on the
subject also deserve attention.
The purpose of this paper is to derive some results that are helpful in the

asymptotic analysis of full (i.e. unconstrained) bandwidth matrix selectors in
multivariate kernel density estimation. Our first result, Lemma 1, builds upon
some heuristic arguments given by Wand and Jones [12] to give the relative
rate of convergence of a bandwidth matrix selector in terms of asymptotic
properties of estimates of mean integrated squared error. We demonstrate the
application of this result in two specific cases. In the first instance we derive the
convergence rates for the plug-in selectors recently investigated by Duong and
Hazelton [1]. While the performance of these selectors has been assessed through a
simulation study, the asymptotic behaviour has not been analysed in the literature.
In the second case we consider biased cross-validation (BCV) selectors. Our results
generalize those of Sain et al. [7], who focused on constrained bandwidth matrices,
and correct the previously published convergence rate for this type of selector in high
dimensions.
The remainder of the paper is organized as follows. In Section 2 we cover the

necessary background material on bandwidth matrix selection and then give Lemma
1 and its proof. In Section 3 we turn our attention to plug-in selectors, convergence
rates for which are given in Theorem 1. Convergence rates for BCV selectors are
considered in Section 4. The main results are given in Theorem 2, the proof of which
proceeds via Lemmas 2 and 3. The paper concludes with a discussion of some of the
practical implications of our findings.

2. Bandwidth matrix selection

For a d-variate random sample X1;X2;y;Xn drawn from a density f the kernel
density estimator is

f̂ðx;HÞ ¼ n�1
Xn

i¼1
KHðx � X iÞ;

where x ¼ ðx1; x2;y; xdÞT and X i ¼ ðXi1;Xi2;y;XidÞT ; i ¼ 1; 2;y; n: Here KðxÞ is
the multivariate kernel which we assume to be a spherically symmetric probability
density function;H is the bandwidth matrix which is symmetric and positive-definite;

and KHðxÞ ¼ jHj�1=2KðH�1=2xÞ:
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In common with most authors in the field, we measure the performance of f̂ by
mean integrated squared error (MISE),

MISEðHÞ � MISE f̂ð	;HÞ ¼ E

Z
ð f̂ðx;HÞ � f ðxÞÞ2 dx;

where it is understood here and hereafter that the integral is over Rd unless stated
otherwise. MISE does not have a tractable closed form and so we resort to using an
asymptotic approximation. The asymptotic mean integrated squared error (AMISE)
is given by

AMISEðHÞ �AMISE f̂ð	;HÞ

¼ n�1jHj�1=2RðKÞ þ 1
4
m2ðKÞ2ðvechTHÞW4ðvechHÞ; ð1Þ

where RðKÞ ¼
R

KðxÞ2dxoN; m2ðKÞId ¼
R

xxT KðxÞ dx with m2ðKÞoN; Id the d 

d identity matrix, and vech is the vector half operator so that vechH is the lower
triangular half of H strung out columnwise into a vector. See [13, Chapter 4], for

example. The W4 matrix is the 1
2

dðd þ 1Þ 
 1
2

dðd þ 1Þ matrix given by

W4 ¼
Z

vechð2D2f ðxÞ � dg D2f ðxÞÞvechT ð2D2f ðxÞ � dg D2f ðxÞÞ dx;

where D2f ðxÞ is the Hessian matrix of f and dgA is matrix A with all of its non-
diagonal elements set to zero. Sufficient conditions for the validity of the expansions

defined by Eq. (1) are that all entries in D2f ðxÞ are square integrable and all entries

of H-0 and n�1jHj�1=2-0; as n-N:With the introduction of some more notation
we can derive an expression for individual elements of the matrix W4: Let r ¼
ðr1; r2; ;y; rdÞ where the r1; r2;y; rd are non-negative integers. Let jrj ¼ r1 þ r2 þ
?þ rd then the rth partial derivative of f can be written as

f ðrÞðxÞ ¼ @jrj

@r1
x1@

r2
x2y@rd

xd

f ðxÞ:

Denote the integrated density derivative functional by

cr ¼
Z

f ðrÞðxÞf ðxÞ dx

then the elements of W4 are cr functionals with jrj ¼ 4: In particular for the bivariate
case

W4 ¼
c40 2c31 c22

2c31 4c22 2c13

c22 2c13 c04

2
64

3
75:

The bandwidth selectors described in this paper seek to estimate

HAMISE ¼ argmin
H

AMISE f̂ð	;HÞ;

which is a tractable surrogate for HMISE; the minimizer of MISE: Both plug-in and
BCV approaches work by obtaining estimates of the cr functionals and hence of the
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matrix W4: Replacing W4 by its estimate in (1) produces an estimate dAMISEAMISE of
AMISE that can be minimized to give a data-driven bandwidth matrix. What
distinguishes the plug-in from the BCV method is the manner in which cr is

estimated. In the plug-in case we denote the relevant estimators by $cr and $W4; and
the estimated AMISE by

PIðHÞ ¼ n�1RðKÞjHj�1=2 þ 1
4
m2ðKÞ2ðvechTHÞ $W4ðvechHÞ: ð2Þ

The minimizer of (2) is the plug-in selector $H: For BCV the corresponding estimators

are denoted *cr and *W4; and the estimated AMISE by

BCVðHÞ ¼ n�1RðKÞjHj�1=2 þ 1
4
m2ðKÞ2ðvechTHÞ *W4ðvechHÞ: ð3Þ

The minimizer of (3) is the BCV selector *H:
Following Wand [10], the plug-in estimator of cr is

$crðGÞ ¼ n�1
Xn

i¼1
f̂ ðrÞðX i;GÞ ¼ n�2

Xn

i¼1

Xn

j¼1
K

ðrÞ
G ðX i � X jÞ: ð4Þ

Here G is a pilot bandwidth matrix, crucial to the performance of the plug-in
methodology. In line with Wand and Jones [12] and Duong and Hazelton [1] we

constrain the pilot bandwidth matrix to be of the form G ¼ g2I:While this form of G
may appear restrictive, the empirical work of Duong and Hazelton indicates that it
can produce reasonable results when applied to pre-sphered data. Two data-driven
methods for choosing g have been proposed. Wand and Jones [12] suggested

employing a separate value of g for each functional $cr such that jrj ¼ 4: Specifically,
for given r Wand and Jones suggested using the pilot bandwidth

gr;AMSE ¼ argmin
g

AMSE $crðgÞ;

where AMSE denotes asymptotic mean squared error. However, Duong and

Hazelton noted that this approach could result in a matrix $W4 which is not positive-
definite. These authors developed an alternative technique whereby a common g is

applied in estimating all the cr functionals which ensures that $W4 is positive-definite
if K is multivariate normal. Duong and Hazelton proposed that the common g

should be chosen to estimate g4;SAMSE; the minimizer of the ‘sum of AMSE’ criterion

SAMSE4ðgÞ ¼
X

r:jrj¼4
AMSE $crðgÞ:

We shall refer to these different implementations of the plug-in bandwidth selector as
the AMSE and SAMSE methods. In practice we do not know gr;AMSE or g4;SAMSE

because they depend on functionals of f : Nonetheless, the convergence rates for the
selectors do not suffer if the pilot bandwidths are replaced by any estimate of the
correct order. Henceforth, we shall assume that the plug-in methods are executed
using such pilot bandwidth estimates.
Biased cross-validation was introduced by Scott and Terrell [9] for univariate

density estimation. In the multivariate setting Sain et al. [7] considered two slightly
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different versions of BCV selector. We concentrate on the second (which these
authors referred to as BCV2); cf. [3]. In this method the cr functionals are estimated
by

*crðHÞ ¼ n�1
Xn

i¼1
f̂
ðrÞ
�i ðX i;HÞ ¼ n�1ðn � 1Þ�1

Xn

i¼1

Xn

j¼1
ja1

K
ðrÞ
H ðX i � X jÞ: ð5Þ

In comparison with the plug-in method the pilot bandwidth has been set equal to H;
and the diagonal, non-stochastic, terms in (4) have been omitted. (It is also possible
to implement the plug-in method with there terms removed although we do not
pursue the matter here; cf. [5].)
The performance of a general bandwidth matrix selector can be assessed by its

relative rate of convergence. We say that the selector #H converges to HAMISE with
relative rate n�a if

vechð #H�HAMISEÞ ¼ OpðJd�n�aÞvechHAMISE; ð6Þ

where Jd� is the d� 
 d� matrix of ones and d� ¼ 1
2

dðd þ 1Þ: Here we have extended
the asymptotic order notation to matrix sequences. Specifically, let fAng and fBng be
sequences of matrices with common dimensions. We write An ¼ oðBnÞ if aij ¼ oðbijÞ
for all elements aij of An and bij of Bn: We also have corresponding definitions for

O; op and Op: The rationale for using OpðJd�n�aÞ; rather than OpðId�n�aÞ; in (6) is as

follows. In the general case, when all elements of vechðHAMISEÞ are non-zero and

Oðn�2=ðdþ4ÞÞ; (6) remains valid if OpðJd�n�aÞ is replaced by OpðId�n�aÞ: However,
some elements of vechðHAMISEÞ will be zero for certain types of target density. For
example, the off-diagonal terms of HAMISE will be zero if f is a bivariate normal
density with diagonal covariance matrix. In such circumstances it is natural to

calculate the rate of convergence of the corresponding elements of #H relative to the

general order of HAMISE (i.e. Oðn�2=ðdþ4ÞÞ), since the relative rate of convergence to a
zero element is undefined.

A problem in finding relative rates for plug-in and BCV selectors is that neither $H

nor *H are available in closed form. Instead each must be found by numerical
minimization of the appropriate estimate of AMISE: It is therefore useful to express
convergence rates for a selector in terms of the asymptotic performance of the
AMISE estimate. We can do so by means of Lemma 1.

Lemma 1. Assume that:

(A1) All entries in D2f ðxÞ are bounded, continuous and square integrable.
(A2) All entries of H-0 and n�1jHj�1=2-0; as n-N:
(A3) K is a spherically symmetric probability density.

Let #H ¼ argminH
dAMISEAMISE be a bandwidth selector and define its mean squared error

ðMSEÞ by

MSEðvech #HÞ ¼ E½vechð #H�HAMISEÞvechTð #H�HAMISEÞ�:
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Then

MSEðvech #HÞ ¼ AMSEðvech #HÞðId� þ oðJd� ÞÞ;

where the asymptotic MSE can be written as

AMSEðvech #HÞ ¼ ½ABiasðvech #HÞ�½ABiasðvech #HÞ�T þAVarðvech #HÞ

in which

ABiasðvech #HÞ ¼ ½D2
HAMISEðHAMISEÞ��1E½DHð dAMISEAMISE �AMISEÞðHAMISEÞ�;

AVarðvech #HÞ ¼ ½D2
HAMISEðHAMISEÞ��1Var½DHð dAMISEAMISE�AMISEÞðHAMISEÞ�


 ½D2
HAMISEðHAMISEÞ��1:

Here DH is the differential operator with respect to vechH and D2
H is the corresponding

Hessian operator.

Proof. We may expand DH
dAMISEAMISE as follows:

DH
dAMISEAMISEð #HÞ ¼DHð dAMISEAMISE�AMISEÞð #HÞ þ DHAMISEð #HÞ

¼DHð dAMISEAMISE�AMISEÞð #HÞ þ fDHAMISEðHAMISEÞ

þ ½Id� þ opðJd� Þ�D2
HAMISEðHAMISEÞvechð #H�HAMISEÞg:

Now we have DH
dAMISEAMISEð #HÞ ¼ 0 and DHAMISEðHAMISEÞ ¼ 0 so that

vechð #H�HAMISEÞ ¼ � ½Id� þ opðJd� Þ�½D2
HAMISEðHAMISEÞ��1


 DHð dAMISEAMISE�AMISEÞð #HÞ:

Since dAMISEAMISEðHÞ!p AMISEðHÞ then #H!p HAMISE as n-N and so

DHð dAMISEAMISE �AMISEÞð #HÞ ¼ ½Id� þ opðJd� Þ�DHð dAMISEAMISE�AMISEÞðHAMISEÞ:

This implies that

vechð #H�HAMISEÞ ¼ � ½Id� þ opðJd� Þ�½D2
HAMISEðHAMISEÞ��1


 DHð dAMISEAMISE�AMISEÞðHAMISEÞ:

Taking expectations and variances, respectively, completes the proof. &

If MSEðvech #HÞ ¼ OðJd�n�2bÞðvechHAMISEÞðvechTHAMISEÞ then #H has relative

rate n�b: Hence Lemma 1 allows the relative rate for #H to HAMISE to be computed

from knowledge of mean and covariance matrix of DHð dAMISEAMISE�
AMISEÞðHAMISEÞ: Naturally, this lemma can be adapted to consider convergence
to HMISE by replacing all references to AMISE by MISE: Nonetheless, it is generally
simpler to consider convergence to HAMISE and then examine whether the
discrepancy between HMISE and its asymptotic form is significant.
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3. Relative rates of convergence for plug-in selectors

Recall that for plug-in selectors, PI is the estimator of AMISE: Now

ðPI�AMISEÞðHÞ ¼ 1
4
m2ðKÞ2ðvechTHÞð $W4 � W4ÞðvechHÞ½1þ opð1Þ�

so that

E½DHðPI�AMISEÞðHÞ� ¼ 1
2
m2ðKÞ2½Id� þ oðJd� Þ�ðE $W4 � W4ÞðvechHÞ;

Var½DHðPI�AMISEÞðHÞ� ¼ 1
4
m2ðKÞ4½Id� þ oðJd� Þ�Var½ $W4ðvechHÞ�:

Theorem 1. Assume (A1)–(A3) from Lemma 1. Assume also that KðrÞ is square

integrable, and that if jrj ¼ 4 then KðrÞð0Þ ¼ 1 if all elements of r are even and

K ðrÞð0Þ ¼ 0 otherwise. If $HAMSE and $HSAMSE denote, respectively, the AMSE and

SAMSE plug-in bandwidth selectors described in Section 2, then:

(i) The relative rate of convergence of $HAMSE to HAMISE is n�4=ðdþ12Þ:
(ii) The relative rate of convergence of $HSAMSE to HAMISE is n�2=ðdþ6Þ:

Remark 1. The additional conditions on K are satisfied by most common kernels
including the Gaussian.

Remark 2. Result (i) is implicit in the work of Wand and Jones [12].

Remark 3. The asymptotic properties of $HAMSE are superior to those of $HSAMSE:
Nonetheless, the difference in rates of convergence is not great. In particular, for the

important bivariate case the relative rate of convergence to HAMISE for $HAMSE is

n�2=7 and for $HSAMSE is n�1=4: Even for a sample of size n ¼ 100; 000 the ratio of

n�2=7 to n�1=4 is only about 1.5, so comparison of the convergence rates alone will
provide little guidance as to whether AMSE or SAMSE approaches should be
preferred in practice.

Remark 4. The relative rate of convergence for a plug-in selector of a diagonal

bandwidth matrix n�minð8;dþ4Þ=ð2dþ12Þ; as demonstrated by Wand and Jones [12]. This
rate is faster than those for the full bandwidth selectors. Intuitively speaking, this
indicates that choosing the orientation of the kernel functions is the most difficult
aspect of the bandwidth selection problem for both AMSE and SAMSE plug-in
methods.

Remark 5. It is straightforward to show that

vechðHAMISE �HMISEÞ ¼ OðJd�n�2=ðdþ4ÞÞvechHMISE

so that the discrepancy between HAMISE and HMISE is asymptotically negligible in

comparison to the relative rate of convergence of $HSAMSE to HAMISE: However, the
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discrepancy between HAMISE and HMISE dominates the AMSE rate from Theorem 1
for d44:

Proof of Theorem 1. From Wand and Jones [12] we know that the estimator $cr has
slowest rate if at least one element of r is odd because it is impossible to annihilate
the leading term in the bias in this instance. When jrj ¼ 4 the optimal pilot

bandwidth for these functional estimators is gr;AMSE ¼ Oðn�2=ðdþ12ÞÞ; giving
Bias $crðgr;AMSEÞ ¼ Oðg2r;AMSEÞ ¼ Oðn�4=ðdþ12ÞÞ;

Var $crðgr;AMSEÞ ¼ Oðn�2g�d�8
r;AMSEÞ ¼ Oðn�8=ðdþ12ÞÞ:

It follows that

E½DHðPI�AMISEÞðHAMISEÞ� ¼ OðJd�n�4=ðdþ12ÞÞvechHAMISE ð7Þ

and

Var½DHðPI�AMISEÞðHAMISEÞ�

¼ OðJd�n�8=ðdþ12ÞÞðvechHAMISEÞðvechTHAMISEÞ: ð8Þ

The Hessian matrix

D2
HAMISE f̂ð	;HÞ ¼ 1

4
n�1ð4pÞ�d=2jHj�1=2DT

d ðH�1#IdÞ


 ½ðvec IdÞðvecTIdÞ þ 2Id2 �ðId#H�1ÞDd þ 1
2
W4

converges to a constant, positive-definite matrix as n-N: Here vec is the vector
operator, so that vecH is concatenation of the columns of H: The duplication matrix
of order d is Dd and it relates the vec and vech operators in the following ways:

vecH ¼ Dd vechH;

DT
d vecH ¼ vechðHþHT � dgHÞ:

Also # is the Kronecker (or tensor) product operator between two matrices. The
proof of part (i) follows immediately by substituting (7) and (8) into the expansion of

AMSEðvech $HÞ obtained from Lemma 1.

From Duong and Hazelton [1], the SAMSE pilot bandwidth is g4;SAMSE ¼
Oðn�1=ðdþ6ÞÞ: Straightforward calculations then give

Bias $crðgj;SAMSEÞ ¼ Oðg2j;SAMSEÞ ¼ Oðn�2=ðdþ6ÞÞ

when it follows that

E½DHðPI�AMISEÞðHAMISEÞ� ¼ OðJd�n�2=ðdþ6ÞÞvechHAMISE: ð9Þ

It can be shown that in the SAMSE plug-in method the variance of $cr is dominated
by the leading term of the squared bias. Part (ii) then follows by substituting (9) into
the result of Lemma 1, and noting the asymptotic constancy of the Hessian matrix as
for part (i). &
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4. Relative rates of convergence for BCV selectors

In this section we compute the relative rate of the BCV selector when K is
Gaussian. The results can be extended to more general kernel functions at the
expense of more complex proofs.

Theorem 2. Assume (A1)–(A2) of Lemma 1, and that K is Gaussian. If *H denotes the

BCV selector, minimizing (3), then the relative rate of convergence of *H to HAMISE is

n�minðd;4Þ=ð2dþ8Þ:

Remark 1. The BCV selector rate is slower than both AMSE and SAMSE plug-in rates.

Remark 2. The rate from Theorem 2 remains unchanged for the BCV selection when
the bandwidth matrix is constrained to be diagonal, or even a constant multiple of

the identity matrix. It follows that the relative rate of n�d=ð2dþ8Þ given by Sain et al.
[7] for the BCV2 constrained matrices is incorrect for d44: In particular, the rate

does not tend to n�1=2 as d becomes large. The form of the rate changes after the
fourth dimension because the squared bias of the BCV selector then dominates; cf.
Lemmas 2 and 3. The proof of Sain et al. does not keep proper track of second order

bias terms which should lead to an additional term c4h
5 in their equation 15.

Remark 3. The relative rate of convergence toHMISE is equal to that for convergence
to HAMISE for the BCV selector.

The proof of Theorem 2 proceeds via a pair of lemmas.

Lemma 2. Under the conditions of Theorem 2,

ABiasðvech *HÞ ¼ OðJd�n�2=ðdþ4ÞÞvechHAMISE:

Proof. We start with

ðBCV �AMISEÞðHÞ ¼ 1
4
ðvechTHÞð *W4ðHÞ � W4ÞðvechHÞ½1þ opð1Þ�

then

EðBCV �AMISEÞðHÞ ¼ 1
4
ðvechTHÞðE *W4ðHÞ � W4ÞðvechHÞ½1þ opð1Þ�:

Now, E *W4ðHÞ � W4 and is composed of elements of the type E *crðHÞ � cr: As

E *crðHÞ � cr ¼
1

2

Z
trðHD2f ðxÞÞf ðrÞðxÞ dx

(following Wand and Jones [13, pp. 67–70], for example) thus EðBCV�
AMISEÞðHÞ ¼ OðjjvechHjj3Þ and

E½DHðBCV �AMISEÞðHAMISEÞ� ¼ OðJd�n�2=ðdþ4ÞÞvechHAMISE;

as HAMISE ¼ OðJdn�2=ðdþ4ÞÞ: &
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Lemma 3. Under the conditions of Theorem 2,

AVarðvech *HÞ ¼ OðJd�n�d=ðdþ4ÞÞðvechHAMISEÞðvechTHAMISEÞ:

Proof. Let y ¼ vechH and AðyÞ ¼ *W4ðHÞ: We have

dðyTAðyÞyÞ ¼ dðyTAðyÞÞy þ yTAðyÞ dy

¼ ½ðdyT ÞAðyÞ þ yT dAðyÞ�y þ yTAðyÞ dy

¼ 2yTAðyÞ dy þ vecTðyyTÞ dvecAðyÞ

as ðdyTÞAðyÞy ¼ yTAðyÞ dy and yT dAðyÞy ¼ trðyyT dAðyÞÞ ¼ vecTðyyTÞ dvecAðyÞ:
Then using the first identification table of Magnus and Neudecker [6, p. 176] the
derivative is

DyðyTAðyÞyÞ ¼ 2AðyÞy þ ½DyAðyÞ�TvecðyyTÞ

¼ 2AðyÞy þ ½DyAðyÞ�Tðy#Id� Þy:

Using this, the derivative of BCV�AMISE is

DHðBCV �AMISEÞðHÞ

¼ DH½14ðvech
THÞð *W4ðHÞ � W4ÞðvechHÞ�

¼ 1
2
ð *W4ðHÞ � W4ÞðvechHÞ þ 1

4
½DH

*W4ðHÞ�TðvechH#Id� ÞðvechHÞ:

Then the variance of DHðBCV �AMISEÞðHÞ will be of the same rate as the

minimum rate of Var½ *W4ðHÞðvechHÞ� and Varf½DH
*W4ðHÞ�TðvechH#Id� Þg:

The first of these is

Var½ *W4ðHÞðvechHÞ� ¼ E½ *W4ðHÞðvechHÞðvechTHÞ *W4ðHÞ�

� ½E *W4ðHÞðvechHÞ�½ðvechTHÞE *W4ðHÞ�:

Now E½ *W4ðHÞ *W4ðHÞ� � ½E *W4ðHÞ�½E *W4ðHÞ� contains elements of the type

E½ *cr1ðHÞ *cr2ðHÞ� � ½E *cr1ðHÞ�½E *cr2ðHÞ� ¼Cov½ *cr1ðHÞ; *cr2ðHÞ�

¼OðminfVar *cr1ðHÞ;Var *cr2ðHÞgÞ:

Following Wand and Jones [13, pp. 67–70], for example, we know that Var *crðHÞ ¼
Oðn�2jHj1=2jjvechHjj�jrjÞ provided that n�2jHj�1=2jjvechHjj�jrj-0 as n-N: This is

true for H ¼ OðJdn�2=ðdþ4ÞÞ and jrj ¼ 4: Thus it yields

Var½ *W4ðHAMISEÞðvechHAMISEÞ�

¼ OðJd�n�d=ðdþ4ÞÞðvechHAMISEÞðvechTHAMISEÞ:

ARTICLE IN PRESS
T. Duong, M.L. Hazelton / Journal of Multivariate Analysis 93 (2005) 417–433 427



The second term is

Varf½DH
*W4ðHÞ�T ðvechH#Id� ÞðvechHÞg

¼ Ef½DH
*W4ðHÞ�T ðvechH#Id� ÞðvechHÞðvechTHÞ


 ðvechTH#Id� ÞDH
*W4ðHÞg

� E½DH
*W4ðHÞ�T ðvechH#Id� ÞðvechHÞðvechTHÞ


 ðvechTH#Id� ÞE½DH
*W4ðHÞ�:

Now E½DH
*W4ðHÞ�T ½DH

*W4ðHÞ� � E½DH
*W4ðHÞ�TE½DH

*W4ðHÞ� contains blocks of ele-
ments of the typeX

r

Ef½DH
*crðHÞ�½DH

*crðHÞ�Tg � E½DH
*crðHÞ�E½DH

*crðHÞ�T

¼
X

r

Var DH
*crðHÞ

¼
X

r

Var n�1ðn � 1Þ�1
Xn

i¼1

Xn

j¼1
ja1

DHf
ðrÞ
H ðX i � X jÞ

2
664

3
775; ð10Þ

where fRð	Þ is the multivariate normal density with mean vector 0 and covariance

matrix R: Using the normal kernel allows us to compute the derivative of fðrÞ
H more

easily:

DHf
ðrÞ
H ðxÞ ¼ @jrj

@xr1
1 y@xrd

d

DHfHðxÞ

¼ @jrj

@xr1
1 y@xrd

d

1
2
fHðxÞDT

d vec½H�1xxTH�1 �H�1�

¼ 1
2
fðrÞ
H ðxÞDT

d vec½H�1xxTH�1�

þ 1
2
fHðxÞDT

d vec H
�1 @jrj

@xr1
1 y@xrd

d

ðxxTÞH�1
� �

� 1
2
fðrÞ
H ðxÞDT

d vecH
�1:

If we look at jrj ¼ 4 then

Xn

i¼1

Xn

j¼1
ja1

fHðX i � X jÞ
@jrj

@xr1
1 y@xrd

d

½ðX i � X jÞðX i � X jÞT �

¼
Xn

i¼1

Xn

j¼1
ja1

fHðX i � X jÞC0;
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where

C0 ¼
2Ekk þ 2Ecc if r ¼ 2ek þ 2ec; k; c ¼ 1; 2y; d;

0 otherwise

�

and Eij is a d� 
 d� elementary matrix which has 1 as its ði; jÞ-th element and 0

elsewhere. So then

n�1ðn � 1Þ�1
Xn

i¼1

Xn

j¼1
ja1

DHf
ðrÞ
H ðX i � X jÞ

¼ 1
2
DT

d ðH�1#H�1Þvec *w½2�
r ðHÞ þ 1

2
*c0ðHÞDT

d ðH�1#H�1ÞvecC0

� 1
2
*crðHÞDT

d vecH
�1 ð11Þ

using vecðABCÞ ¼ ðCT#AÞvec B and where

vec *w½2�
r ðHÞ ¼ n�1ðn � 1Þ�1

Xn

i¼1

Xn

j¼1
ja1

fðrÞ
H ðX i � X jÞvec½ðX i � X jÞðX i � X jÞT �:

Now the order of the variance of the left-hand side of Eq. (11) is the minimum order

of the three terms on the right-hand side. We know that Var *crðHÞ ¼
Oðn�2jHj�1=2jjvechHjj�jrjÞ so the second term of the right-hand side is

Var½ *crðHAMISEÞDT
d vecH

�1
AMISE�

¼ OðJd�n�2jHAMISEj�1=2jjvechHAMISEjj�4ÞðvechHAMISEÞðvechTHAMISEÞ

¼ OðJd�nð�dþ4Þ=ðdþ4ÞÞ ð12Þ

and the third term is

Var½ *c0ðHAMISEÞDT
d ðH�1

AMISE#H�1
AMISEÞvecC0�

¼ OðJd�n�2jHAMISEj�1=2ÞðvechH�2
AMISEÞðvech

TH�2
AMISEÞ

¼ OðJd�n�d=ðdþ4ÞÞ: ð13Þ

We will now examine the first term of the right-hand side of Eq. (11). As the

summand of the double sum of vec *w
½2�
r ðHÞ is a symmetric function so

Var vec *w½2�
r ðHÞ ¼ 2n�2 Var fðrÞ

H ðX1 � X2Þvec½ðX1 � X2ÞðX1 � X2ÞT �

þ 4n�1 CovffðrÞ
H ðX1 � X2Þvec½ðX1 � X2ÞðX1 � X2ÞT �;

fðrÞ
H ðX2 � X3ÞvecT ½ðX2 � X3ÞðX2 � X3ÞT �g:
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The first term of Var vec *w
½2�
r ðHÞ is

VarffðrÞ
H ðX1 � X2Þvec½ðX1 � X2ÞðX1 � X2ÞT �g

¼ OðJd2 jHj�1=2jjvechHjj�jrjÞðvecHÞðvecTHÞ

as

EffðrÞ
H ðX1 � X2Þvec½ðX1 � X2ÞðX1 � X2ÞT �g

¼
Z
R2d

fðrÞ
H ðx � yÞvec½ðx � yÞðx � yÞT � f ðxÞf ðyÞ dx dy

¼
Z
R2d

fHðx � yÞvec½ðx � yÞðx � yÞT � f ðxÞf ðrÞðyÞ dx dy

¼
Z
R2d

fIðwÞvecðH1=2wwTH1=2Þf ðy þH1=2wÞ dw dy

¼
Z
R2d

fIðwÞvecðH1=2wwTH1=2Þ½ f ðyÞ þ OðjjvechHjjÞ� dw dy

¼ cr vecHþ OðjjvechHjjÞvecH

and

EffðrÞ
H ðX1 � X2Þ2 vec½ðX1 � X2ÞðX1 � X2ÞT �vecT ½ðX1 � X2ÞðX1 � X2Þ�g

¼
Z
R2d

fðrÞ
H ðx � yÞ2vec½ðx � yÞðx � yÞT �vecT ½ðx � yÞðx � yÞT � f ðxÞf ðyÞ dx dy

¼
Z
R2d

½jHj�1=2fðrÞ
I ðH�1=2ðx � yÞÞOðJd2 jjvechHjj�jrj=2Þ�2vec½ðx � yÞðx � yÞT �


 vecT ½ðx � yÞðx � yÞT � f ðxÞf ðyÞ dx dy

¼ OðJd2 jHj�1=2jjvechHjj�jrjÞ
Z
R2d

fðrÞ
I ðwÞ2vecðH1=2wwTH1=2Þ


 vecTðH1=2wwTH1=2Þf ðy þH1=2wÞf ðyÞ dw dy

¼ OðJd2 jHj�1=2jjvechHjj�jrjÞ
Z
R2d

fðrÞ
I ðwÞ2ðH1=2#H1=2ÞvecðwwTÞ


 vecTðwwTÞðH1=2#H1=2Þ½ f ðyÞ þ oð1Þ� f ðyÞ dw dy

¼ OðJd2 jHj�1=2jjvechHjj�jrjÞðvecHÞðvecTHÞ:

The second term of Var vec *w
½2�
r ðHÞ is

CovffðrÞ
H ðX1 � X2Þvec½ðX1 � X2ÞðX1 � X2ÞT �;

fðrÞ
H ðX2 � X3ÞvecT ½ðX2 � X3ÞðX2 � X3ÞT �g ¼ OðJd2ÞðvecHÞðvecTHÞ
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as

EffðrÞ
H ðX1 � X2Þvec½ðX1 � X2ÞðX1 � X2ÞT �


 fðrÞ
H ðX2 � X3ÞvecT ½ðX2 � X3ÞðX2 � X3ÞT �g

¼
Z
R3d

fðrÞ
H ðx � yÞvec½ðx � yÞðx � yÞT �fðrÞ

H ðy � zÞvecT ½ðy � zÞðy � zÞT �


 f ðxÞf ðyÞf ðzÞ dx dy dz

¼
Z
R3d

fHðx � yÞvec½ðx � yÞðx � yÞT �fHðy � zÞvecT ½ðy � zÞðy � zÞT �


 f ðrÞðxÞf ðrÞðyÞf ðzÞ dx dy dz

¼
Z
R3d

fIðvÞfIðwÞvecðH1=2vvTH1=2ÞvecTðH1=2wwTH1=2Þ


 f ðrÞðy þH1=2wÞf ðrÞðyÞf ðy �H1=2wÞ dv dw dy

¼ OðJd2ÞðvecHÞðvecTHÞ

which is the same order as EffðrÞ
H ðX1 � X2Þvec½ðX1 � X2ÞðX1 � X2ÞT �g EffðrÞ

H ðX2 �
X3ÞvecT ½ðX2 � X3ÞðX2 � X3ÞT �g: Putting these together yields

Var½DT
d ðH�1

AMISE#H�1
AMISEÞvec *w½2�

r ðHAMISEÞ�

¼ OðJd�n�2jHAMISEj�1=2jjvechHAMISEjj�4ÞðvechH�2
AMISEÞðvech

TH�2
AMISEÞ

þ OðJd�n�1ÞðvechHAMISEÞðvechTHAMISEÞ

¼ OðJd�nð�dþ4Þ=ðdþ4ÞÞ: ð14Þ

Eqs. (12)–(14) are the variances of the individual terms of the right-hand side of
Eq. (11) so the variance of Eq. (11) is

Var n�1ðn � 1Þ�1
Xn

i¼1

Xn

j¼1
ja1

DHf
ðrÞ
H ðX i � X jÞ

2
664

3
775 ¼ OðJd�nð�dþ4Þ=ðdþ4ÞÞ

which in turn implies that

Varf½DH
*W4ðHAMISEÞ�TðvechHAMISE#Id� ÞðvechHAMISEÞg

¼ OðJd�nð�dþ4Þ=ðdþ4ÞÞ½ðvechHAMISEÞðvechTHAMISEÞ�2

¼ OðJd�n�d=ðdþ4ÞÞðvechHAMISEÞðvechTHAMISEÞ:
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This is the same order as Var½ *W4ðHAMISEÞðvechHAMISEÞ�; which is the other term in
the variance of DHðBCV �AMISEÞðHÞ i.e.

Var½DHðBCV�AMISEÞðHÞ�

¼ OðJd�n�d=ðdþ4ÞÞðvechHAMISEÞðvechTHAMISEÞ: &

Combining Lemmas 1–3, we have proved Theorem 2.

5. Discussion

In this paper we have described a general method for deriving relative rates of
convergence for full bandwidth matrix selectors. This methodology has been applied
to compute rates for the plug-in selector of Wand and Jones [12], the plug-in selector
of Duong and Hazelton [1], and for a generalized form of the biased cross-validation
selector of Sain et al. [7]. While these rates provide a guide towards the comparative
performance of the bandwidth selectors in question, the usual caveats regarding the
interpretation of asymptotic results within a finite sample setting apply. Simulation
experiments and analyses of real data sets can provide insight into the behaviour of
bandwidth matrix selectors for moderate sample sizes. Both [1] and [2] describe the
results from such studies for bivariate data from a range of types of target density.
The BCV bandwidth matrix selectors tended to perform less well than both AMSE
and SAMSE plug-in selectors in these studies, which is in keeping with the
theoretical results in this paper. See the first remark after Theorem 2.
Bandwidth matrix selection for data in more than two dimensions has not received

much attention by way of numerical studies in the literature. This is largely a
reflection of the decreased utility of kernel density estimation in high dimensions.
For example, bivariate density estimates are useful for exploratory data analysis
because they can be displayed using familiar contour or perspective (‘wire frame’)
plots. Visualization of density estimates in higher dimensions is more difficult,
although Scott [8] offers some ingenious approaches to the problem. Furthermore,
the well-known ‘curse of dimensionality’ makes it more or less impossible to obtain
reliable kernel density estimates in dimensions much higher than four without
gigantic sample sizes. The full bandwidth matrix selection methods on which we have
focused are most practicable for bivariate data, when one needs estimate only one
additional smoothing parameter in comparison to a diagonal matrix approach. As a
consequence, the algorithms for full matrix plug-in selection developed by Duong
and Hazelton [1] require only a modest increase in computational cost in comparison
to algorithms for diagonal bandwidth matrices when the data are bivariate. In the
general d-dimensional case, full bandwidth matrices require specification of dðd þ
1Þ=2 parameters as opposed to just d for a diagonal bandwidth matrix. This casts
doubt upon the utility of full bandwidth matrices for d larger than three or four,
although this is of limited importance given the overall problems in high dimensional
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density estimation discussed above. The practicability of full bandwidth matrices for
d ¼ 3 is less clear, and further analysis of this case is an avenue for future research.
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