Plug-in Bandwidth Selectors for Bivariate Kernel Density Estimation

Tarn Duong Supervisor: Dr Martin Hazelton

May 2002

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

Outline

- 1. Motivation
- 2. Basics of KDE
- 3. Plug-in bandwidth selectors
 - Existing and proposed methods
- 4. Simulation and real data results
- 5. Summary

Motivation

Forming KDE (1)

Full bandwidths

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Forming KDE (2)

– Typeset by $\mbox{FoilT}_{\!E\!X}$ –

Equation for KDE

Kernel density estimate is

$$\hat{f}(\boldsymbol{x}; \mathbf{H}) = n^{-1} \sum_{i=1}^{n} K_{\mathbf{H}}(\boldsymbol{x} - \boldsymbol{X}_{i})$$

where

- X_1, X_2, \dots, X_n is sample of n data points
- $\bullet~\mathbf{H}$ is bandwidth matrix
- $K_{\mathbf{H}}(\boldsymbol{x} \boldsymbol{X}_i)$ is normal pdf with mean \boldsymbol{X}_i and variance \mathbf{H}

Advantages of KDE

- does not require parametric form i.e. is non-parametric
- always guaranteed to be a proper pdf

MISE

Mean Integrated Squared Error (MISE) is

$$\begin{split} \text{MISE} \, \hat{f}(\cdot; \mathbf{H}) &= \int_{\mathbb{R}^2} \text{MSE} \, \hat{f}(\boldsymbol{x}; \mathbf{H}) \, d\boldsymbol{x} \\ &= \int_{\mathbb{R}^2} \mathbb{E}[\hat{f}(\boldsymbol{x}; \mathbf{H}) - f(\boldsymbol{x})]^2 \, d\boldsymbol{x} \end{split}$$

where

- $\hat{f}(\boldsymbol{x}; \mathbf{H})$ is kernel density estimate
- $f(\boldsymbol{x})$ is target density

AMISE

Asymptotic Mean Integrated Squared Error (AMISE) is

AMISE $\hat{f}(\cdot; \mathbf{H}) = n^{-1} (4\pi)^{-1} |\mathbf{H}|^{-1/2} + \frac{1}{4} (\operatorname{vech}^T \mathbf{H}) \Psi(\operatorname{vech} \mathbf{H})$

where

- vech **H** is vector of lower triangular half of **H** i.e. if $\mathbf{H} = \begin{bmatrix} h_1^2 & h_{12} \\ h_{12} & h_2^2 \end{bmatrix}$ then vech $\mathbf{H} = \begin{bmatrix} h_1^2 & h_{12} & h_2^2 \end{bmatrix}$
- ${\boldsymbol \Psi}$ is matrix of functionals that depend on f

Plug-in selector

1. choose diagonal or full bandwidth matrix

2. estimate Ψ

3. PI is AMISE with Ψ replaced with $\hat{\Psi}$

$$\operatorname{PI}(\mathbf{H}) = n^{-1} (4\pi)^{-1} |\mathbf{H}|^{-1/2} + \frac{1}{4} (\operatorname{vech}^T \mathbf{H}) \hat{\boldsymbol{\Psi}} (\operatorname{vech} \mathbf{H})$$

4. optimal bandwidth is $\hat{\mathbf{H}}_{\mathrm{PI}} = \underset{\mathbf{H}}{\operatorname{argmin}} \operatorname{PI}(\mathbf{H})$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Existing and proposed methods

• Existing

- 1. use diagonal bandwidth matrix
- 2. estimate Ψ element-wise

• Proposed

- 1. use full bandwidth matrix
- 2. estimate Ψ matrix-wise

'Old Faithful' geyser data

Diagonal and full bandwidth matrices

Full bandwidths

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Explicit expression for $\boldsymbol{\Psi}$

• partial derivative:
$$f^{(r_1,r_2)}(\boldsymbol{x}) = \frac{\partial^{(r_1+r_2)}}{\partial x_1^{r_1} \partial x_2^{r_2}} f(\boldsymbol{x})$$

•
$$\psi$$
 functional: $\psi_{r_1,r_2} = \int_{\mathbb{R}^2} f^{(r_1,r_2)}(\boldsymbol{x}) f(\boldsymbol{x}) \ d\boldsymbol{x}$

• matrix:
$$\Psi = \begin{bmatrix} \psi_{40} & 2\psi_{31} & \psi_{22} \\ 2\psi_{31} & 4\psi_{22} & 2\psi_{13} \\ \psi_{22} & 2\psi_{13} & \psi_{04} \end{bmatrix}$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Estimating ψ_{r_1,r_2}

•
$$\psi_{r_1,r_2} = \mathbb{E} f^{(r_1,r_2)}(\boldsymbol{X})$$

•
$$\hat{\psi}_{r_1,r_2} = n^{-1} \sum_{i=1}^{n} \hat{f}^{(r_1,r_2)}(\boldsymbol{X}_i;g)$$

where g is a (scalar) **pilot** bandwidth

• choose g via minimising MSE ψ_{r_1,r_2}

Estimating ψ_{r_1,r_2} - existing method (1)

Asymptotic MSE of $\hat{\psi}_{r_1,r_2}$ is

AMSE
$$\hat{\psi}_{r_1,r_2}(g) = (4\pi)^{-1} n^{-2} g^{-10}$$

+ $\left[n^{-1} g^{-6} K^{(r_1,r_2)}(\mathbf{0}) + \frac{1}{2} g^2 (\psi_{r_1+2,r_2} + \psi_{r_1,r_2+2}) \right]^2$

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Estimating ψ_{r_1,r_2} - existing method (2)

If r_1, r_2 are both even then

$$g_{r_1,r_2} = \left[\frac{-2K^{(r_1,r_2)}(\mathbf{0})}{(\psi_{r_1+2,r_2} + \psi_{r_1,r_2+2})n}\right]^{1/8}$$

If r_1, r_2 are both odd then

$$g_{r_1,r_2} = \left[\frac{5\psi_{0,0}}{2\pi(\psi_{r_1+2,r_2}+\psi_{r_1,r_2+2})^2n^2}\right]^{1/14}$$

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Estimating Ψ - existing method

$$\hat{\Psi} = \begin{bmatrix} \hat{\psi}_{40}(g_{40}) & 2\hat{\psi}_{31}(g_{31}) & \hat{\psi}_{22}(g_{22}) \\ 2\hat{\psi}_{31}(g_{31}) & 4\hat{\psi}_{22}(g_{22}) & 2\hat{\psi}_{13}(g_{13}) \\ \hat{\psi}_{22}(g_{22}) & 2\hat{\psi}_{13}(g_{13}) & \hat{\psi}_{04}(g_{04}) \end{bmatrix}$$

 $\hat{\Psi}$ can be

- not +ve definite so no finite min for $\operatorname{PI}(\mathbf{H})$
- $\bullet\,$ nearly singular so numerical instability in $\mathrm{PI}(\mathbf{H})$

Estimating ψ_{r_1,r_2} - proposed method (1)

Sum of AMSE is

SAMSE
$$(g) = \sum_{r_1=0}^{4} \text{AMSE } \hat{\psi}_{r_1,r_2}(g)$$
 where $r_2 = 4 - r_1$
= $n^{-2}g^{-12}A_2 + n^{-1}g^{-4}A_3 + \frac{1}{4}g^4A_4$

where $A_2, A_4 > 0$ and $A_3 < 0$.

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Estimating ψ_{r_1,r_2} - proposed method (2)

$$g = \left[\frac{6A_2}{(-A_3 + \sqrt{A_3^2 + 3A_1A_2})n}\right]^{1/8}$$

Estimating Ψ - proposed method

$$\hat{\Psi} = \begin{bmatrix} \hat{\psi}_{40}(g) & 2\hat{\psi}_{31}(g) & \hat{\psi}_{22}(g) \\ 2\hat{\psi}_{31}(g) & 4\hat{\psi}_{22}(g) & 2\hat{\psi}_{13}(g) \\ \hat{\psi}_{22}(g) & 2\hat{\psi}_{13}(g) & \hat{\psi}_{04}(g) \end{bmatrix}$$

- $\hat{\Psi}$ is +ve definite.
- lose a little efficiency compared to exisiting method

Simulation results (1)

- normal mixture densities
 - wide range of features

- closed form for
$$\text{ISE}\hat{f}(\cdot;\mathbf{H}) = \int_{\mathbb{R}^2} [\hat{f}(\boldsymbol{x};\mathbf{H}) - f(\boldsymbol{x})]^2 d\boldsymbol{x}$$

- $\bullet \mbox{ use } \log(ISE)$ to compare performance between
 - diagonal selector with different pilots
 - full selector with different pilots
 - full selector with single pilot
- 400 simulations, each of size n = 1000

Simulation results (2)

Simulation results (3)

Highly correlated normal density - boxplot

Simulation results (4)

Simulation results (5)

Trimodal density - boxplot

Real data KDE - existing method

Density estimate of geyser eruption data

Real data KDE - proposed method

Density estimate of geyser eruption data

Summary

Existing method	Proposed method
Diagonal ${f H}$	Full H
Different pilots	Single pilot
$\hat{\mathbf{\Psi}} eq 0$	$\hat{\mathbf{\Psi}} > 0$
Poor estimation of	Good estimation of
data not aligned to axes	data not aligned to axes