Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion

A tour of kernel smoothing

Tarn Duong

Institut Pasteur

October 2007

Institut Pasteur

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance
●00	00000	00000	000	0000000

The journey up till now

- ▶ 1995–1998 Bachelor, Univ. of Western Australia, Perth
- 1999–2000 Researcher, Australian Bureau of Statistics, Canberra and Sydney
- 2001–2004 PhD, Univ. of Western Australia, Perth
- 2005 Lecturer, Macquarie Univ., Sydney
- 2005–2007 Post-doc, Univ. of New South Wales, Sydney
- 2007– present Post-doc, Institut Pasteur, Paris

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

A tour of kernel smoothing

T. Duong

Introduction Kernel density estimation 000

Bandwidth selection

Applications of KDE

Feature significance

Research interests

- Kernel smoothing
- Nonparametric statistics
- Statistical software

Institut Pasteur

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion
Today	,				

- Kernel density estimation (KDE)
 - 1st stage of inference (estimation)
 - translation is Éstimation de densité à novau
- Feature significance
 - 2nd stage of inference (formal inference)
 - translation is ?
 - extension of density estimation to significance testing

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

A tour of kernel smoothing

T. Duona

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion

Institut Pasteur

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion
Kerne	el (1)				

- NOT cell nucleus
- NOT kernel of an operating system
- ► NOT kernel/nullspace of a matrix A: $\{x : Ax = 0\}$

・ロ・・ (日・・ (日・・ (日・)

Introduction 000	Kernel density estimation o●ooo	Bandwidth selection	Applications of KDE	Feature significance	Conclusion 000
Kerne	el (2)				

Kernel
$$K : \mathbb{R}^d \to \mathbb{R}$$
 is

$$K(\mathbf{x}) \geq 0$$

$$\int_{\mathbb{R}^d} K(\mathbf{x}) \ d\mathbf{x} = 1$$

K is symmetric about 0

・ロト・日本・モート ヨー うへの

Institut Pasteur

T. Duong

Kernel density estimation

Let $X_1, X_2, ..., X_n$ be a random sample drawn from a common density f. A kernel density estimate \hat{f} is

$$\hat{f}(\boldsymbol{x}; \boldsymbol{\mathsf{H}}) = n^{-1} \sum_{i=1}^{n} K_{\boldsymbol{\mathsf{H}}}(\boldsymbol{x} - \boldsymbol{X}_i)$$

where

 $K_{\mathbf{H}}(\mathbf{x} - \mathbf{X}_i) = \text{normal (Gaussian) pdf with mean } \mathbf{X}_i, \text{variance } \mathbf{H}$ $\mathbf{H} = \text{bandwidth or window width (fenetre)}$

(日) (同) (日) (日) (日) (日)

A tour of kernel smoothing

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

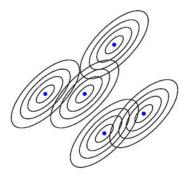
Feature significance

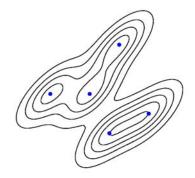
Conclusion

Graphical illustration

Scaled kernels $K_{\mathbf{H}}(\mathbf{x} - \mathbf{X}_i)$

Kernel density estimate \hat{f}





Institut Pasteur

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

Advantages of kernel density estimates

- non-parametric
- easy to construct
- easy to interpret
- suitable for multivariate data
- smooth, no discretisation effects
- no anchor points effects

Institut Pasteur

Intro	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion

Institut Pasteur

Introduction	Kernel density estimation	Bandwidth selection ●0000	Applications of KDE	Feature significance	Conclusion

Bandwidth selectors

- single most important factor effecting performance of \hat{f}
- ► ideal bandwidth selector: $\mathbf{H}_0 = \underset{\mathbf{H}}{\operatorname{argmin}} \operatorname{AMISE}(\mathbf{H})$ where AMISE = asymptotic $\int_{\mathbb{R}^d} \mathbb{E}[\hat{f}(\mathbf{x}; \mathbf{H}) - f(\mathbf{x})]^2 d\mathbf{x}$
- data-driven selector: $\hat{\mathbf{H}} = \underset{\mathbf{H}}{\operatorname{argmin}} \widehat{\operatorname{AMISE}}(\mathbf{H})$

・ロト ・回ト ・ヨト ・ヨト

A tour of kernel smoothing

T. Duong

Introduction Kernel density estimation 0000 00000 00000

Applications of KDE

Feature significance

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Conclusion

Relative convergence rates (1)

► a data-driven selector $\hat{\mathbf{H}} = \underset{\mathbf{H}}{\operatorname{argmin}} \widehat{\operatorname{AMISE}}(\mathbf{H})$ converges to \mathbf{H}_0 with rate $n^{-\alpha}, \alpha > 0$ if

$$\operatorname{vech}(\hat{\mathbf{H}} - \mathbf{H}_0) = O_{\rho}(n^{-\alpha}\mathbf{J})\operatorname{vech}\mathbf{H}_0$$

where O_p is order in probability, $\mathbf{J} = \text{matrix of ones, and}$ vech $\begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

Institut Pasteur

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

Relative convergence rates (2)

• $\hat{\mathbf{H}}$ converges to \mathbf{H}_0 with rate $n^{-\alpha}$ if

$$\begin{aligned} \mathsf{MSE}(\hat{\mathbf{H}}) &= \mathsf{Var}(\hat{\mathbf{H}}) + \mathsf{Bias}(\hat{\mathbf{H}}) \, \mathsf{Bias}^{\mathsf{T}}(\hat{\mathbf{H}}) \\ &= O(n^{-2\alpha})(\mathsf{vech} \, \mathbf{H}_0)(\mathsf{vech}^{\mathsf{T}} \, \mathbf{H}_0) \end{aligned}$$

Institut Pasteur

Bandwidth selection

Applications of KDE

Feature significance

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

Relative convergence rates (3)

Easier(?!) to compute

$$\begin{split} \text{Bias}(\hat{\mathbf{H}}) &= O\left(\mathbb{E}\left[\frac{\partial}{\partial \operatorname{vech} \mathbf{H}}(\widehat{\operatorname{AMISE}} - \operatorname{AMISE})(\mathbf{H}_{0})\right]\right)\\ \text{Var}(\hat{\mathbf{H}}) &= O\left(\text{Var}\left[\frac{\partial}{\partial \operatorname{vech} \mathbf{H}}(\widehat{\operatorname{AMISE}} - \operatorname{AMISE})(\mathbf{H}_{0})\right]\right) \end{split}$$

Institut Pasteur

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

Conclusion

Table of convergence rates

	Convergence rate			
Selector	<i>d</i> = 1	<i>d</i> > 1		
Plug-in 1 (1994)	n ^{-4/13}	$n^{-4/(d+12)}$		
Plug-in 2 (2003)	n ^{-2/7}	n ^{-2/(d+6)}		
CV 1 (1982, 1984)	n ^{-1/10}	$n^{-min(d,4)/(2d+8)}$		
CV 2 (1994)	n ^{-1/10}	n ^{-min(d,4)/(2d+8)}		
CV 3 (1992, 2004)	n ^{-5/14}	n ^{-2/(d+6)}		

<ロ> (日) (日) (日) (日) (日)

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion

Institut Pasteur

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion
Softwa	are				

- ks: R library available on CRAN www.r-project.org
- comprehensive package for kernel density estimation and bandwidth selection

イロン イヨン イヨン イヨン

Kernel density estimation

Bandwidth selection

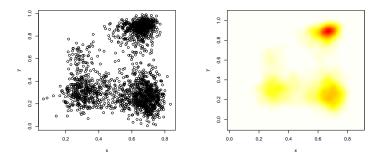
Applications of KDE

Feature significance

Conclusion

Flow cytometry (FACS) data (1)

Data sample



Institut Pasteur

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

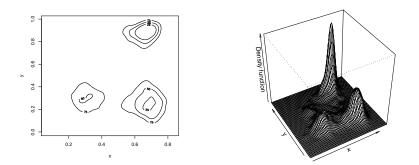
Feature significance

Conclusion

Flow cytometry (FACS) data (2)

Contour plot

Wireframe plot



・ロ・・ 日・・ 田・・ 田・・ 日・ うらぐ

Institut Pasteur

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Conclusion

Independent citations in other fields

- Zago, A. and Dongili P. (2006) Bad loans and efficiency in Italian banks, Working paper no. 28, Università di Verona
- Fieberg, J. (2007) Kernel density estimators of home range: smoothing and the autocorrelation red herring. *Ecology*, 88, 1059–1066
- Peng T.G., Wang Y.H. and Wu T.H. (2007) Mean shift algorithm equipped with the intersection of confidence intervals rule for image segmentation. *Pattern Recognition Letters*, 28, 268–277

T. Duong

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion

Institut Pasteur

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance ●000000	Conclusion
Features					

- d = 1, 2: mode, valley, saddle-point, ridge etc.
- ► *d* > 2: mode

Institut Pasteur

2

<ロ> (四) (四) (日) (日) (日)

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

イロン イヨン イヨン イヨン

Conclusion

Modes and modal regions

- mode \boldsymbol{x}^* of function $f : \mathbb{R}^d \to \mathbb{R}$
 - $D f(\mathbf{x}^*) = \mathbf{0}, D^2 f(\mathbf{x}^*) < 0$
 - D f(x*) = 0, eigenvalues λ₁(x*), λ₂(x*),..., λ_d(x*) of D² f(x*) < 0</p>
- modal region M of f
 - $M = \{ \boldsymbol{x} : \| \mathsf{D} f(\boldsymbol{x}) \| \le \delta, -\varepsilon \le \lambda_j(\boldsymbol{x}) \le \mathbf{0} \}$
 - δ, ε 'small' positive

Institut Pasteur

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

Kernel density derivative estimation

density (zero-th derivative):

$$\hat{f}(\boldsymbol{x}; \boldsymbol{\mathsf{H}}) = n^{-1} \sum_{i=1}^{n} K_{\boldsymbol{\mathsf{H}}}(\boldsymbol{x} - \boldsymbol{X}_i)$$

gradient (first derivative):

$$\widehat{\mathsf{D}f}(\mathbf{x};\mathbf{H}) = n^{-1}\sum_{i=1}^{n}\mathsf{D}K_{\mathsf{H}}(\mathbf{x}-\mathbf{X}_{i})$$

curvature (second derivative):

$$\widehat{\mathsf{D}^2 f}(\boldsymbol{x}; \mathbf{H}) = n^{-1} \sum_{i=1}^n \mathsf{D}^2 \, \mathcal{K}_{\mathbf{H}}(\boldsymbol{x} - \boldsymbol{X}_i)$$

Institut Pasteur

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

ヘロン 人間 とくほど 人間と

Conclusion

Kernel curvature estimators

- ► asymptotic distribution: vech $\widehat{D^2 f}(\boldsymbol{x}; \boldsymbol{H}) \stackrel{\text{approx.}}{\sim} N(\text{vech } D^2 f(\boldsymbol{x}), \Sigma(\boldsymbol{x}))$
- ► local null hypothesis: $H_0(\mathbf{x})$: vech $D^2 f(\mathbf{x}) = \mathbf{0}$
- null distribution: vech $\widehat{D^2 f}(\boldsymbol{x}; \boldsymbol{H}) \stackrel{\text{approx.}}{\sim} N(\boldsymbol{0}, \Sigma(\boldsymbol{x}))$
- ► test statistic: $W(\mathbf{x}) = \|\Sigma(\mathbf{x})^{-1/2} \operatorname{vech} \widehat{D^2 f}(\mathbf{x}; \mathbf{H})\|^2 \stackrel{\text{approx.}}{\sim} \chi^2_{d(d+1)/2}$

T. Duong

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

Conclusion

Significant curvature regions

- extension of kernel density estimation suited to finding modal regions
- ► modal region estimate at significance level *α*: significant curvature region *M* = {*x* : *W*(*x*) ≥ χ²_{d(d+1)/2;1-α'}}
- α' is adjusted significance level to account for multiple hypothesis tests

Institut Pasteur

T. Duong

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance 00000●0	Conclusion
Softw	are				

feature: R library available on CRAN

Institut Pasteur

Kernel density estimation

Bandwidth selection

Applications of KDE

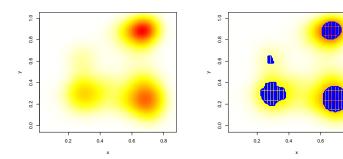
Feature significance

Conclusion

Flow cytometry (FACS) data (3)

Density estimate

Modal regions estimates



0.8

Institut Pasteur

T. Duong

Introc 000	Kernel density estimation	Bandwidth selection		Conclusion

Institut Pasteur

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion ●○○

Summary

- Multivariate kernel density estimators
 - theoretical development of optimal bandwidth selectors
 - software implementation
- Feature significance
 - some theoretical development of multivariate modal region estimation
 - software implementation

・ロト ・回 ト ・ヨト ・ヨト … ヨ

T. Duong

Introduction	Kernel density estimation	Bandwidth selection	Applications of KDE	Feature significance	Conclusion

Future directions

- Comparing two kernel density estimators
- Optimal bandwidth selection for kernel density derivative estimators

・ロト ・回ト ・ヨト ・ヨト ・ヨ

A tour of kernel smoothing

T. Duona

Kernel density estimation

Bandwidth selection

Applications of KDE

Feature significance

Conclusion 000

Acknowledgements

- Kernel density estimation
 - Prof. Martin Hazelton, then Univ. of Western Australia, now at Massey Univ. (New Zealand), as PhD supervisor
- Feature significance
 - Dr Inge Koch, Univ. of New South Wales (Australia),
 - Prof. Matt Wand, then Univ. of New South Wales (Australia), now at Univ. of Wollongong (Australia)

・ロン ・回 と ・ ヨ と ・ ヨ と