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Preface

Kernel smoothers, for their ability to render masses of data into useful and
interpretable summaries, form an integral part of the modern computational
data analysis toolkit. Their success is due in a large part to their intuitive
appeal which makes them accessible to non-specialists in mathematics.

Our goal in writing this monograph is to provide an overview of ker-
nel smoothers for multivariate data analysis. In keeping with their intuitive
appeal, for each different data analytic situation, we present how a kernel
smoother provides a solution to it, illustrating it with statistical graphics cre-
ated from the experimental data, and supporting it with minimal technical
mathematics. These technical details are then gradually filled in to guide the
reader towards a more comprehensive understanding of the underlying sta-
tistical, mathematical and computational concepts of kernel smoothing. It is
our hope that the book can be read at different levels: for data scientists who
wish to apply kernel smoothing techniques to their data analysis problems,
for undergraduate students who aim to understand the basic statistical prop-
erties of these methods, and for post-graduate students/specialist researchers
who require details of their technical mathematical properties. An expanded
explanation of how to read this monograph is included in Section 1.5.

The most well-known kernel smoothers are kernel density estimators,
which convert multivariate point clouds into a smooth graphical visualisa-
tion, and so can be considered as an important improvement over data his-
tograms. Interest in them is not solely restricted to their visual appeal, as their
mathematical form leads to the quantification of key statistical characteristics
which greatly assist in drawing meaningful conclusions from the observed
data. From this base case of density estimation, kernel smoothers can be ex-
tended to a wide range of more complex statistical data analytic situations, in-
cluding the identification of data-rich regions, clustering (unsupervised learn-
ing), classification (supervised learning) and hypothesis testing.

Many of these complex data analysis problems are closely related to
derivatives of the density function, especially the first (gradient) and sec-
ond (Hessian) derivatives. An important contribution of this monograph is
to provide a systematic treatment of multivariate density derivative estima-

xiii
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tion. Rather than being an arcane theoretical problem with limited practical
applications, as it has been usually historically viewed, density derivative es-
timation is now recognised as a key component in the toolkit for exploratory
data analysis and statistical inference.

We can cover only a small selection of the possible data analysis situations
in this monograph, and we focus on those with a sufficient level of maturity to
be able to offer meaningful analyses of experimental data which are informed
by solid mathematical justifications. This has lead to the exclusion of im-
portant and interesting problems such as density estimation in non-Euclidean
spaces (e.g., simplices, spheres), mode estimation, receiver operating charac-
teristic (ROC) curve analysis, conditional estimation, censored data analysis,
or regression. Rather than being a pessimistic observation, this augurs well
for the continuing potential of kernel smoothing methods to contribute to the
solution of a wide range of complex multivariate data analysis problems in
the future.

In our voyage through the field of kernel smoothing techniques, we have
been fortunate to benefit from the experience of all of our research collabo-
rators, who are too numerous to mention individually here. Though it would
be remiss of us to omit that we have been greatly influenced by our mentors:
Antonio Cuevas, Agustı́n Garcı́a Nogales, Martin Hazelton, Berwin Turlach
and Matt Wand. A special thank you also goes to Larry Wasserman for his
encouragement at the initial stages of this project, during the stay of J.E.C.
at the Carnegie Mellon University in 2015: probably this book would not
have been written without such initial push. Moreover, regarding the writing
of this monograph itself, we are grateful to all those who have reviewed the
manuscript drafts and whose feedback have much contributed to improving
them. We thank all the host and funding organisations as well, which are also
too numerous to list individually, for supporting our research work over the
past two decades.

And last, but of course not least, J.E.C. would like to thank his family for
their loving and support, and T.D. would like to thank his family and most of
all, Christophe.

José E. Chacón Tarn Duong
Badajoz, Spain Paris, France
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Chapter 1

Introduction

The late twentieth century witnessed the arrival of an omnipresence of data,
ushering in the so-called Information Age (Castells, 2010). Statistics plays a
key role in this age, as it can be broadly characterised as a meta-science which
draws meaningful conclusions from data. This role has become increasingly
critical with the advent of Open Data, which professes the unrestricted access
to data as a source material, as well as similar freedoms to produce and to dis-
seminate any suitable analyses from them (OKI, 2016). To tackle the analysis
of the widely different forms of data, there are correspondingly a wide range
of statistical techniques.

1.1 Exploratory data analysis with density estimation

Exploratory data analysis (EDA), introduced by Tukey (1977), is a fundamen-
tal class of statistical methods for understanding the structure of data sets. As
its name suggests, its relationship with more formal inferential methods is
sometimes cast with the former solely serving as a preliminary role to the ul-
timate goal of inference. This belies its importance in its own right, especially
given that increasingly accessible computing power has rendered it increas-
ingly informative.

Graphical techniques occupy a central place in EDA, as appropriate vi-
sual summaries have the ability to convey concisely the deep structure of
the data which would otherwise be difficult to discern from purely numeri-
cal summaries. The usual starting point is that we suppose that the observed
data set consists of the realisations of a continuous multi-dimensional random
variable XXX , whose underlying unknown probabilistic mechanism is fully de-
termined by its probability density function f . The density function provides
a wealth of information about the data and its distribution, so considerable ef-
forts, historically and currently, have been expended to develop its statistical
estimation. If each data point is represented by a multi-dimensional vector,

1



2 INTRODUCTION

then the most basic form of a density estimator is the scatter plot which visu-
alises the data as points in this multi-dimensional space.

A motivating data set is the tempb data. In Figure 1.1 is the scatter plot of
the n = 21908 pairs of the daily minimum and maximum temperatures (◦C)
in the GHCN-D v2 time series (Menne et al., 2012) from 1 Jan 1955 to 31
Dec 2015 recorded at the weather station in Badajoz, Spain. It is located at
(38.88N, 6.83W) and has GHCN-D station code SP000004452. As this is a
dense data set in the central regions, its standard scatter plot results in solid
coloured regions which obscure the underlying data structure. To enhance the
scatter plot we use alpha blending, where the data points are represented by
translucent dots, and where overlapping shapes reinforce rather than obscure
each other as the overlapping regions lead to an increase in the displayed
opacity (Porter & Duffle, 1984). For alpha blended scatter plots, darker re-
gions thus indicate regions of higher data density.

Figure 1.1 Scatter plot of minimum and maximum daily temperatures (◦C) of the
n = 21908 days between 1 Jan 1955 to 31 Dec 2015, recorded at the weather station
in Badajoz, Spain.

Alpha blended scatter plots can be considered as a low level form of data
smoothing of the density function, though there exist more sophisticated data
smoothing techniques. Data smoothers in general replace each infinitesimal
data point with a smooth function over its local neighbourhood in the data
space. With this smooth representation of the data sample, we are able to pro-
ceed to more suitable visualisations. We will highlight kernel smoothers in
this monograph as they form a class of methods which are highly applicable
for the practical analysis of experimental data, as well as residing within a
solid theoretical framework which assures the statistical rigour of their con-
struction and software implementation. Since the introduction of kernel es-
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timators of density functions, or more concisely kernel density estimators,
in the pioneering period of the 1950s–60s (Fix & Hodges, 1951; Rosenblatt,
1956; Parzen, 1962), they have become indispensable within the EDA toolkit.

The daily temperature data are suited to the classical kernel density esti-
mation case, as there are few extreme outlying values or thick tails or a data
support with a rigid boundary. Figure 1.2 illustrates the worldbank data, in
which such unfavourable features are present, and so require the modification
of the classical estimator.

Figure 1.2 Scatter plot matrix of the World Bank development indicators for the n =
218 national entities. There are six variables: CO2 emissions per capita (thousands
Kg), GDP per capita (thousands of current USD), annual GDP growth rate (%),
annual inflation rate (%), number of internet users in the population (%) and the
added value of agricultural production as a ratio of the GDP (%).

This is a subset of six development indicators (World Bank Group, 2016)
for n = 218 national entities for the year 2011, which is the latest year for
which they are consistently available. These indicators are the carbon diox-
ide (CO2) emissions per capita (thousands Kg), the gross domestic product
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(GDP) per capita (thousands of current US$), the annual GDP growth rate
(%), the annual inflation rate (%), the number of internet users in the popula-
tion (%) and the added value of agricultural production as a ratio of the total
GDP (%). The first pair of variables (CO2 emissions, GDP per capita) exhibit
semi-infinite values on [0,∞) as well as thick tails. The second pair (GDP
growth, inflation) can be both positive and negative, and have some highly
extreme values. The third pair of the percentages of internet users and the
added value of agricultural production are strictly bounded in [0%, 100%].
We will demonstrate the modifications of standard kernel estimators in re-
sponse to these more challenging density estimation cases.

1.2 Exploratory data analysis with density derivatives estimation

The data density gradient (first derivative) and the density curvature (second
derivative) provide additional information about the structure of the data set
which are not evident from investigating only the density function itself. This
supplementary information from the derivatives provides a suitable analysis
of data which follow filamentary structures.

The quake data are the locations of the n= 2646 severe earthquakes in the
years 100 to 2016 inclusive within the Circum-Pacific belt seismic zone (more
commonly known as the Pacific Ring of Fire) as approximately delimited by
the United States Geological Survey (USGS, 2017).

Figure 1.3 Scatter plot of the geographical locations (longitude, latitude) of the n =
2646 major earthquakes in the Circum-Pacific belt seismic zone. The locations are
the green points. The boundaries of the land masses are the dotted grey curves, and
the boundaries of the tectonic plates are the solid blue curves.
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This is the most important seismic zone in the world, in terms of the
number of severe earthquakes, as well as the size of the geographical area.
The locations are catalogued in the Global Significant Earthquake Database
(NGDC/WDS, 2017), and are plotted as the green points in Figure 1.3, with
the longitude ranging from 0 to 360◦. The boundaries of the land masses are
the dotted grey curves, and the boundaries of the tectonic plates are the solid
blue curves (Bird, 2003). We will demonstrate the utility of kernel estimators
of the density gradient and curvature to summarise this filamentary data set
of earthquake locations.

1.3 Clustering/unsupervised learning

Density estimation can be considered as the base case for all other data
smoothing problems for EDA. So the success in practical and theoretical
terms of kernel methods here has seen kernel estimators being applied to more
complex data analysis situations, e.g., clustering (also known as unsupervised
learning) where observations within a cluster are similar and observations
from different clusters are dissimilar. Clustering benefits greatly when extra
information beyond the data density values is supplied.

The development of biotechnologies is one of the major generators of ex-
perimental data. The availability of these data, in terms of both quality and
quantity, is the driver of the corresponding development of quantitative data
analysis in the biological sciences. In cellular biology, the properties of cells
are studied via staining with fluorochrome markers. These markers attach to
a particular type of cell, and fluoresce at a known range of wavelengths when
exposed to a laser light. This fluorescent signal therefore allows the identifica-
tion of the cell type amongst a mixed cell population. One such biotechnology
is a flow cytometer. In this machine, the stained cell sample is directed in a
thin tube where the cells pass singly before a laser light, and their fluorescent
signal is captured by a series of sensors. A flow cytometer is capable of au-
tomatically gathering information from much larger numbers of cells than a
manual experiment/analysis (see Givan, 2001 for an overview).

In the hematopoietic stem cell transplant (HSCT) experiments (Aghaee-
pour et al., 2013), cell samples are collected from 30 mice which have re-
ceived a graft transplant. In the hsct data set, there are 278005 observations
with the fluorescent levels (normalised to 0 to 1023) of the fluorochromes:
FITC-CD45.1, APC.CD45.2 and PE-Ly65/Mac1. A successful graft can be
established by the presence of monocytes/granulocytes amongst the recipient
cell population. In Figure 1.4 is the scatter plot of n = 6236 measurements
for subject mouse #12. When coupled with biological knowledge on charac-
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terising (a) recipient versus donor cells and (b) monocytes/granulocytes from
other cell types in terms of the fluorescence measurements, we will highlight
the role of kernel estimators of density derivatives in their role in facilitating
more accurate clustering results for complex data.

Figure 1.4 Scatter plot of the fluorescent signals of the n = 6236 cells of subject 12
from a hematopoietic stem cell transplant operation. The fluorochrome on the x-axis
is FITC-CD45.1, y-axis is APC-CD45.2, z-axis is PE-Ly65/Mac1.

1.4 Classification/supervised learning

Classification/supervised learning is a similar data analysis problem to clus-
tering/unsupervised learning in that we search for groups with similar mem-
bers. The main difference is that for the former, the training data are aug-
mented by an auxiliary variable for the group label. This auxiliary variable
label gives us the number and location of the groups (which is one of the
main goals of cluster analysis), so we are not required to carry out this task.
On the other hand, we have the test data which are drawn from the same pop-
ulation as the training data for which no auxiliary group label is observed.
The main goal of classification is to determine if these groups in the training
data are able to yield useful estimated group labels for the test data.

A cardiotocogram is a biotechnology which measures the instantaneous
foetal heart rate and uterine contraction signals during pregnancy, and is an
important tool for evaluating the health of a foetus. The cardio data con-
sist of measurements taken from 2126 foetal cardiotocograms, collected by
Ayres-de Campos et al. (2000) and are available from the UCI Machine
Learning Repository (Lichman, 2013). This complete data set is divided into
a random 25% subset (n = 532) to be the training data sample and the re-
maining 75% (m = 1594) to be the test data sample. For the training sample,
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the cardiotocograms are classified into three groups according to the foetal
state: normal (n1 = 412, green), suspect (n2 = 83, orange), and pathologi-
cal (n3 = 37, purple) in the scatter plot in Figure 1.5(a). These group labels
were determined by three expert obstetricians and a consensus group label fi-
nally assigned to each cardiotocogram. From the wide range of variables de-
rived from the cardiotocogram, we analyse the abnormal short term variabil-
ity (percentage) and the mean level of the cardiotocographic signal histogram
(0–255). The aim is to assign a group label for the test data in Figure 1.5(b)
based on the groups in the training data. We will highlight the role of kernel
estimators for classification for these training/test data sets.

(a) Train (b) Test

Figure 1.5 Scatter plots of the foetal cardiotocographic data. The x-axis is the ab-
normal short term variability (percentage), and the y-axis is the mean of the car-
diotocographic histogram (0–255). (a) Training data (n = 532) with three groups:
normal (n1 = 412, green), suspect (n2 = 83, orange), pathological (n3 = 37, purple).
(b) Test data (m = 1594) with no group labels.

1.5 Suggestions on how to read this monograph

For the data analyst who wishes to gain a broad understanding of the state
of the art of practical multivariate data analysis with kernel smoothers us-
ing a minimal mathematical theoretical framework, the following chapters
illustrate the different kernel smoothers with experimental data sets by high-
lighting their intuitive, visual approach to data analysis.

Sections 2.1–2.4 serve as an introduction into kernel smoothers by pre-
senting kernel density estimators as an improvement on histograms. These
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sections deal with this basic case of kernel smoothing, and the subsequent
sections explore their extensions to more complex data analytic cases.

Sections 4.1–4.3 introduce some modified density estimators, e.g., for
data with rigid boundaries, where these standard density estimators are not
sufficient.

Sections 5.1–5.3 focus on the estimation of the first derivative (gradi-
ent) and the second derivative (curvature) of the density function. Whilst it
has been recognised for some time now that these derivatives provide cru-
cial information that is not found in the density itself, practical algorithms
for estimating them are less well-developed. These sections set up a usable
framework that includes the previously treated density estimation as a special
case, and provide the foundations for topics, e.g. machine learning, treated in
the subsequent chapters.

Section 6.1 tackles level sets of the density function to identify data-
rich regions. Section 6.2 (excluding 6.2.3) deals with clustering/unsupervised
learning, and in particular the mean shift clustering which implements the
density gradient estimators to improve clustering accuracy. Section 6.3 ex-
plores density ridges, which implement density curvature estimators, as a
high-content extension of principal components. Section 6.4 is the first foray
into statistical hypothesis testing via significant modal regions (based on the
density curvature) as regions of interest.

Chapter 7 extends from these single data sample analysis situations to
2- and k-sample comparison problems. Section 7.1 highlights the case for
the difference between two density functions. Section 7.2 tackles classifi-
cation/supervised learning for comparing k density estimators. Section 7.3
(excluding 7.3.1) introduces density estimation for data measured with er-
ror. Section 7.4 provides a nearest neighbour mean shift clustering (suitable
for high-dimensional data), by exploiting the connections between kernel and
nearest neighbour estimators.

Section 8.1 outlines the R commands to produce the displayed figures
from the accompanying ks package and associated scripts.

For a university undergraduate level, the remaining additional sections
elaborate the mathematical framework of kernel smoothers. They provide the
underlying mathematical reasoning for the widespread applicability of kernel
smoothers for data analysis.

Sections 2.5–2.8 concern the squared error analysis for density estimators.
Sections 3.1–3.9 formalise the crucial problem of bandwidth (or smoothing
parameter) selection for density estimators. Section 4.4 examines the sec-
ondary question of kernel function choice. Sections 5.5–5.6 formalise the
bandwidth selection problem for density derivative estimators, with a unified
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framework that includes as a special case the bandwidths for density esti-
mation. Section 6.2.3 completes the description of the mean shift clustering
algorithm. Section 7.3.1 describes classical deconvolution density estimation.

For a university postgraduate level, the additional sections, i.e., Sec-
tions 2.9, 3.10, 4.5–4.6, 5.9, 7.5.1–7.5.2, 8.2–8.5, contain the detailed mathe-
matical derivations and other specialised topics which require a certain level
of mathematical sophistication to comprehend. When read in conjunction
with the other chapters, they provide an overview of many sub-fields in kernel
smoothing, as well as in-depth knowledge of the approaches to the bandwidth
selection problems.

These suggestions are summarised in Table 1.1 below. They should not be
be considered as strict recommendations, but rather as loose guidance from
the authors, especially for novices to multivariate kernel smoothing.

Topic Data Under- Post-
analyst graduate graduate

Density estimation 2.1–2.4 2.1–2.8 2.1–2.9
Bandwidth selection – 3.1–3.9 3.1–3.10
Modified density estimation 4.1–4.3 4.1–4.4 4.1–4.6
Density derivative estimation 5.1–5.3 5.1–5.6 5.1–5.9

(ex. 5.1.3) (ex. 5.1.3)
Level set estimation 6.1 6.1 6.1
Density-based clustering 6.2 (ex. 6.2.3) 6.2 6.2
Density ridge estimation 6.3 6.3 6.3
Feature significance 6.4 6.4 6.4
Density difference estimation 7.1 7.1 7.1
Classification 7.2 7.2 7.2
Data measured with error 7.3 (ex. 7.3.1) 7.3 7.3, 7.5.1
Nearest neighbour estimation 7.4 7.4 7.4, 7.5.2
Computation 8.1 8.1 8.1–8.5

Table 1.1 Suggestions on how to read this monograph.

This monograph can also be considered as complementary to those which
exist already on kernel and other non-parametric smoothing methods, such as
Devroye & Györfi (1985), Silverman (1986), Scott (1992, 2015), Wand &
Jones (1995), Simonoff (1996), Bowman & Azzalini (1997), Devroye & Lu-
gosi (2001a), Wasserman (2006), Klemelä (2009), and Horová et al. (2012).
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Chapter 2

Density estimation

In the introduction, we saw the scatter plot visualisation of the density of the
daily temperature data, which can be interpreted as a low level smoothing of
the data density. In this chapter, we pursue more advanced statistical estima-
tors of the density function. Section 2.1 begins with histograms, as they were
the first non-parametric density estimators. Section 2.2 motivates kernel den-
sity estimators as improvements over histograms. Sections 2.3–2.4 begin to
tackle the choice of the bandwidth matrix, by offering practical insights into
the choice amongst the most common data-based algorithms. Sections 2.5–
2.8 set up a rigorous mathematical framework for optimal bandwidth selec-
tion. Section 2.9 fills in the mathematical details that were previously omitted
in order to facilitate freely flowing text.

Unless stated otherwise, the data XXX1, . . . ,XXXn are assumed to be a d-
dimensional random sample drawn from a common density f . This is short-
hand for a collection of independent and identically distributed random vari-
ables, where each of the XXX i is a d-dimensional random vector drawn from the
target density f . If required, its coordinates are written as XXX i = (Xi1, . . . ,Xid),
and a vector xxx ∈ Rd is similarly denoted as xxx = (x1, . . . ,xd). An m×n matrix

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 ∈Mm×n

can be written in its vectorised form as A = [a11, . . . ,am1; · · · ;a1n, . . . ,amn] to
maintain a compact horizontal notation.

2.1 Histogram density estimation

The histogram was the first non-parametric density estimator, though its ex-
act date of invention is not known for certain, but likely to have been in the
17th century, according to the summary of its historical genesis (Scott, 2015,
pp.16–17). Its chronological primacy is due to its simple computation.

11
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To construct a histogram, the preliminary step is to discretise the sam-
ple space in subregions known as bins. This discretisation usually consists
of an equidistant rectangular grid, starting at the anchor point (the marginal
minima) and containing M bins, B1, . . . ,BM, each with width bi along the i-th
coordinate. A histogram density estimator is a step function with a constant
value within each of the bins, where the constant is given by the proportion
of data points XXX i which fall in the bin divided by the bin volume. Writing
bbb = (b1, . . . ,bd) for the vector of bin widths, this is expressed as

f̂hist(xxx;bbb) =
N j

nb1 · · ·bd
for all xxx ∈ B j

where N j = ∑
n
i=1 111{XXX i ∈ B j} is the random variable that counts the number of

data points that fall in the j-th bin B j. Constructing a histogram involves the
choice of two tuning parameters: the anchor point and the binwidth vector bbb.

Example 2.1 The influence of the anchor point with the daily temperature
data introduced in Section 1.1 is illustrated in Figure 2.1. A histogram with
anchor point (−5.54,6.52) is shown in Figure 2.1(a) and with an anchor point
(−4.71,7.71) in Figure 2.1(b), which is a translation by one-half bin of the
left histogram.

(a) (b)

Figure 2.1 Anchor point placement for the histograms of the daily temperature data.
(a) Anchor point (−5.54,6.52). (b) Anchor point (−4.71,7.71) (black circles). The
height of the histogram is represented by a colour gradient: white/grey for low den-
sity through to purple for high density. The common binwidth is bbb = (1.66,2.37).

The colour scale indicates density: starting with white for low density,
increasing through grey and ending with purple for high density. The left
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histogram is clearly bimodal, whereas the right histogram is less clearly so.
This change in the visual appearance is induced solely by a translation in
anchor point and the resulting bin interval boundaries.

The binwidth utilised in Figure 2.1 is b̂bbNS, given by the normal scale bin-
width for the i-th dimension by, as noted in Simonoff (1996, p. 98),

b̂NS,i = 2 ·31/(d+2)
π

d/(2d+4)sin−1/(d+2) (2.1)

where si is the i-th marginal standard deviation. Equation (2.1) gives bbb =
b̂bbNS = (1.66,2.37) for the daily temperature data. This binwidth is optimal
when the target density is a normal density. As the data are manifestly non-
normal, we explore histograms with different binwidths.

The influence of the binwidth is illustrated in Figure 2.2. The histogram
with binwidth equal to bbb/3 is Figure 2.2(a), and can be considered to be
undersmoothed, as it appears to reduce insufficiently the data as presented in
the scatter plot. The bin counts tend to be low and similar to each other as the
bins are small, and so the light grey colours dominate. On the other hand, the
right histogram in Figure 2.2(b) with a binwidth equal to 3bbb is oversmoothed
since much of the structure of the data are obscured by bins which are too
large and contain counts which are too aggregated. So whilst the normal scale
binwidth is not always optimal, it nonetheless provides a reasonable starting
point to avoid extreme under- and oversmoothing. �

(a) (b)

Figure 2.2 Binwidths for the histograms of the daily temperature data. (a) Under-
smoothed histogram, with binwidth bbb/3. (b) Oversmoothed histogram, with binwidth
3bbb. The base binwidth is bbb = (1.66,2.37).

In addition to these tuning parameters, histograms display a discontin-
uous appearance as they have a constant value within each rectangular bin.
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This can be attenuated, whilst not being entirely eliminated, by various ap-
proaches: (i) replacing rectangular with hexagonal bins which have more ob-
tuse corners (Carr et al., 1987), or (ii) replacing the constant count by a linear
interpolation (frequency polygons), or (iii) averaging several histograms with
translated anchor points (average shifted histograms), which also attenuate
the anchor point placement problem. Options (ii) and (iii) are explored in
detail in Simonoff (1996, Ch. 4) and Scott (2015, Ch. 4–5).

In the latter reference, it is also shown that the limiting case of averaging
an infinite number of shifted histograms coincides with the kernel density
estimator. For references about histograms, the interested reader is referred
to the papers (and the references therein) of Lugosi & Nobel (1996) for their
consistency properties, Beirlant et al. (1994) for the asymptotic distribution of
its error, or Scott (1979) and Wand (1997) for data-based rules for automatic
binwidth selection.

Further details about histograms will be covered only sporadically as we
turn our focus onto kernel smoothers.

2.2 Kernel density estimation

Apart from the histogram, the most popular density estimator is most likely
to be the kernel density estimator, which is defined as

f̂ (xxx;H) = n−1
n

∑
i=1

KH(xxx−XXX i). (2.2)

Here, K is a kernel function, which means that it is an integrable function with
unit integral. Sometimes additional requirements are imposed on K, such as
that it is a smooth, unimodal, spherically symmetric density function.

The invention of kernel density estimators is traditionally attributed to
Rosenblatt (1956) and/or Parzen (1962), and they are sometimes referred to
as Parzen-Rosenblatt estimators or Parzen window estimators (but see also
Akaike, 1954). However, the first appearance of kernel estimators is likely to
be Fix & Hodges (1951): as the original technical report is difficult to find, it
has been re-published as Fix & Hodges (1989).

The form of f̂ in Equation (2.2) can be interpreted from a couple of dif-
ferent points of view: (i) from an estimation point xxx, it is a local weighted
averaging estimator where the weight of XXX i decreases as its distance to xxx in-
creases, or (ii) from a data point XXX i, its probability mass is smoothed in the
local neighbourhood according to the scaled kernel to represent the unob-
served data points.

The crucial tuning parameter is the bandwidth H, also called the window
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width matrix. It is a symmetric, positive definite, d × d matrix of smooth-
ing parameters. The bandwidth controls the orientation and the extent of the
smoothing applied via the scaled kernel KH(xxx) = |H|−1/2K(H−1/2xxx), where
|H| is the determinant of H and H−1/2 is the inverse of its matrix square root.
A scaled kernel is positioned so that its mode coincides with each data point
XXX i, which is expressed mathematically as KH(xxx− XXX i). The scaled kernels
are summed and the division by n ensures that the overall probability mass
of f̂ remains one. As the kernels are placed on each data point, the anchor
point placement problem that the histogram suffers from is thus eliminated.
The kernel density estimator also inherits the smoothness of the individual
kernels. The increased smoothness of kernel estimators in comparison to his-
tograms is not solely an aesthetic improvement, as it also leads to improved
statistical properties, which is elaborated in the subsequent sections.

The most widely used multivariate kernel function is the normal kernel

K(xxx) = (2π)−d/2 exp(−1
2 xxx>xxx)

which is the standard d-variate normal density function. The scaled, translated
normal kernel is

KH(xxx−XXX i) = (2π)−d/2|H|−1/2 exp
{
− 1

2(xxx−XXX i)
>H−1(xxx−XXX i)

}
which is a normal density centred at XXX i and with variance matrix H. This is
one of the main reasons that we parametrise H as a variance matrix, i.e., on
the squared data scale, rather than the square root of a variance matrix to be
comparable on the data scale. For this, and other reasons, the normal kernel is
almost universally preferred for multivariate data, in contrast to the univariate
case where other kernels can be preferred. Consequently we use the normal
kernel in numerical calculations, unless otherwise indicated, throughout this
monograph.

Example 2.2 A graphical illustration of the construction of Equation (2.2) on
a subset of the daily temperature data is given in Figure 2.3. The data points
are the solid green circles. On the left in Figure 2.3(a) are the 10 individual
scaled normal kernels, each with variance H = [6.71,6.04;6.04,10.42], and
centred on each of the data points. On the right in Figure 2.3(b) is the contour
plot of the kernel density estimate. The contours are the solid black curves,
which are level sets of the density estimate, and the regions between two
consecutive contours are filled with a colour gradient as used previously.

Following the same procedure, Figure 2.4 shows the kernel density es-
timate of the complete data set of the n = 21908 observations with H =
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(a) (b)

Figure 2.3 Construction of a density estimate on a subset of the daily temperature
data. Data points are the solid green circles. (a) Individual scaled kernels centred on
the data points. (b) Kernel density estimate.

[0.67,0.60;0.60,1.04]. In Figure 2.4(a), there are 3 probability contours cor-
responding to the quartiles 25%, 50%, 75% of the probability mass (a more
precise definition is given below). The wire-frame or perspective plot in Fig-
ure 2.4(b) is a more direct 3-dimensional visualisation. Whilst it avoids a
potential visual bias, as it does not require the choice of a finite number of
contours since it is able to display a continuum of density heights, the trade-
off is that a 3-dimensional display on a 2-dimensional page is not always easy
to interpret, e.g., it is not straightforward to establish the relative heights of
the two modes due to the perspective distortion. �

2.2.1 Probability contours as multivariate quantiles

The levels of the contours play an important role in conveying visual infor-
mation in contour plots of kernel density estimates.

Example 2.3 In Figure 2.5(a), there are 9 contours (0.0010, 0.0017, 0.0023,
0.0028, 0.0032, 0.0034, 0.0038, 0.0044, 0.0049) which are linear in a prob-
ability space, in the sense that each contour encloses 10% of the sample
space, e.g. P(XXX ∈ {xxx : 0.0023 < f (xxx) ≤ 0.0028}) = 0.1 for XXX ∼ f . A lin-
ear scale of the density heights, e.g., in geographical or atmospheric pressure
maps, is also widely used, as illustrated in Figure 2.5(b). There are 9 contours
spaced linearly from 0.0009 to 0.0059, which cover the density range. Fig-
ures 2.4(a) and 2.5(a) show that the number of contours subtly influences the
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(a) (b)

Figure 2.4 Plots of the density estimate of the daily temperature data, with sequential
colour scale. (a) Filled contour plot with quartile (25%, 50%, 75%) contours. (b)
Wire frame/perspective plot.

interpretation of the density estimator f̂ (xxx;H). With the 3 contours located
at the quartiles, Figure 2.4(a) emphasises the larger scale features. Whereas
Figure 2.5(a), the inclusion of smaller, larger and more intermediate deciles,
present a higher resolution map. An appropriate number of contours depends
largely on the goal of the visual analysis; some practical recommendations
about the contour levels can be found in Delicado & Vieu (2015). �

(a) (b)

Figure 2.5 Choice of contour levels for the density estimate of the daily temperature
data. (a) Probability (decile) contour levels. (b) Linear contour levels. Both plots
have 9 contour levels each.



18 DENSITY ESTIMATION

The probability contours in Figures 2.4(a) and 2.5(a) are defined as fol-
lows: for any τ ∈ (0,1), the 100τ% contour is the region with the smallest
area which encloses 100τ% of the probability mass of the density function
(Bowman & Foster, 1993b; Hyndman, 1996), and hence can be interpreted as
a multivariate equivalent to the usual univariate quantiles. There is a differ-
ence, even in the univariate case: quantiles delimit a central region contain-
ing some percentage of the probability mass, whereas these highest density
regions delimit the smallest region containing some percentage of the prob-
ability mass. For unimodal symmetric distributions the two entities coincide,
but they give different answers for multimodal distributions.

Example 2.4 The multivariate median corresponding to the 50% contour re-
gion of the temperature data in Figure 2.6(a) does not occupy a uniform half
of the data space but is concentrated in the central regions, indicating the inho-
mogeneity of this distribution of the temperature measurements. Figure 2.6(b)
is the 95% contour region, which can be interpreted as a conservative estimate
of the effective support of the density function (we revisit the topic of density
support estimation in Section 6.1). �

(a) (b)

Figure 2.6 Probability contours contour levels for the density estimate of the daily
temperature data. (a) 50% contour as a multivariate median. (b) 95% contour as an
effective data support.

There are several advantages of these probability contours: (i) the mini-
mum, the maximum, and the step size of the contours can be decided before
any calculation, and (ii) they allow a probabilistic interpretation of defined
contours. For example, the linear contour levels for Figure 2.5(b) may have
to be adjusted if new data are added or the data scale is changed. On the other
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hand, the probability contours are scale invariant and are well-defined for any
changes to the data set.

Formally, a 100τ% region of a density f is defined as the level set
L( fτ) = {xxx : f (xxx) ≥ fτ} with its corresponding contour level fτ such that
P(XXX ∈ L( fτ)) = 1− τ and that L( fτ) has a minimal hypervolume. This im-
plicit definition somewhat belies their importance, so Hyndman (1996) elu-
cidates them with an alternative interpretation. Let Y = f (XXX) be the ran-
dom variable XXX evaluated at its own density function, and fτ be the τ-
quantile of Y , i.e., FY ( fτ) = τ where FY is the cumulative distribution func-
tion of Y . Then P(XXX ∈L( fτ)) =

∫
Rd f (xxx)111{L( fτ)}dxxx =E{111{ f (XXX)≥ fτ}}=

P( f (XXX)≥ fτ) = P(Y ≥ fτ) = 1−FY ( fτ) = 1−τ. The minimal hypervolume
property is more complicated to establish concisely, and for brevity we leave
the reader to peruse it in Hyndman (1996). It follows that an easy-to-compute
estimate of the probability contour level fτ is given by the τ-th quantile f̂τ of
f̂ (XXX1;H), . . . , f̂ (XXXn;H). This estimator is valid for any consistent estimator
of f , and not only for a kernel estimator.

2.2.2 Contour colour scales

Along with the contour levels, the colour scheme of these contour regions also
plays an important role in graphical visualisation. We have used a sequential
colour scheme in Figures 2.1–2.6 which feature a white background (low
density), progressing to grey (medium) to purple (high). All the colour scales
used in this monograph take their cue from Zeileis et al. (2009). The visuali-
sation of kernel density estimators require some care as it depends on the goal
of the data analysis. It should not detract though that kernel density estima-
tors strike a happy medium between displaying the intricate data structures,
whilst still reducing the visual complexity of a scatter plot. A deeper study of
the visualisation of density estimators can be found in Klemelä (2009).

Example 2.5 In Figure 2.7 are two alternative sequential colour schemes.
Figure 2.7(a) is a heat colour scale with pink (low), violet (medium), blue
(high). Figure 2.7(b) is the terrain colour scale, commonly used in geograph-
ical land maps where the green represents sea level (low) to yellow/beige
(medium) and through to white for the snow-capped mountains (high). �

2.3 Gains from unconstrained bandwidth matrices

The bandwidth matrix in the definition of the kernel density estimator
f̂ (xxx;H) = n−1

∑
n
i=1 KH(xxx−XXX i) was taken to be a symmetric, positive defi-

nite matrix. In the univariate case the bandwidth matrix H reduces to a pos-
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(a) (b)

Figure 2.7 Filled contour plots of the density estimate of the daily temperature data,
with alternative colour scales. (a) Heat colours: pink (low), violet (medium), blue
(high). (b) Terrain colours: green (low), yellow/beige (medium), white (high).

itive scalar, so writing H = h2 for some h > 0 the kernel estimator in Equa-
tion (2.2) can be written more simply, since the kernel scaling simplifies to
Kh(x) = K(x/h)/h, as

f̂ (x;h) = n−1
n

∑
i=1

Kh(x−Xi).

For multivariate data, the bandwidth matrix offers a richer class of the
possibilities for smoothing. Historically, the bandwidth matrix was initially
restricted to the class A= {h2Id : h > 0} of a positive scalar multiplying the
identity matrix Id (Cacoullos, 1966), resulting in a simple multivariate kernel
density estimator

f̂ (xxx;h) = (nhd)−1
n

∑
i=1

K
(
(xxx−XXX i)/h

)
,

or to the class D = {diag(h2
1, . . . ,h

2
d) : h1, . . . ,hd > 0} of positive definite di-

agonal matrices (Epanechnikov, 1969), leading to

f̂ (xxx;h1, . . . ,hd) = (nh1 · · ·hd)
−1

n

∑
i=1

K
(
(x1−Xi1)/h1, . . . ,(xd−Xid)/hd

)
.

The most general class of unconstrained matrices (i.e., symmetric positive
definite matrices) F = {H ∈Md×d : H > 0,H = H>} was introduced in De-
heuvels (1977), although it remained mostly unconsidered until the 1990s,
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partly due to computational limitations but also because the kernel estimator
based on simpler parametrisations were substantially easier to analyse given
the then-available mathematical tools.

A comprehensive treatment of the different classes of bandwidth matrix
parametrisations was carried out by Wand & Jones (1993), who considered
more classes than these three, e.g., V = {h2S : h > 0} where S is the sample
variance matrix. These authors strongly advocate against the use of the scalar-
based classes like A or V, because A applies the same amount of smoothing
for all coordinate directions and the sample variance matrix in V does not
usually capture the density curvature and its orientation: a practical illustra-
tion of this issue is given in Chacón & Duong (2010, Section 3.1.3). Wand
& Jones (1993) recommend the unconstrained class F for most data analysis
cases, followed by the diagonal class D. Since the publication of this influen-
tial study, the question of the bandwidth matrix parametrisation is usually cast
as a choice between the diagonal and unconstrained classes. Furthermore, a
data-based procedure to make this choice is outlined in Chacón (2009).

Example 2.6 The grevillea data is an experimental data example that val-
idates the utilisation of unconstrained matrices. It contains the geographical
locations (in decimal degrees) of the specimens of Grevillea uncinulata, more
commonly known as the Hook leaf Grevillea, which is an endemic floral
species to south Western Australia. This region of south Western Australia
is one of the 25 ‘biodiversity hotspots’ which are ‘areas featuring exceptional
concentrations of endemic species and experiencing exceptional loss of habi-
tat’ identified in Myers et al. (2000) to assist in formulating priorities in bio-
diversity conservation policies. These data are available from the open data
platform of the Australian Living Atlas (CSIRO, 2016).

Figure 2.8(a) is the scatter plot of the n = 222 observations of the (longi-
tude, latitude) measurements in decimal degrees. The data points are plotted
in green, the ocean is blue, and the land mass is white. The kernel density
estimate with an unconstrained bandwidth [0.058,−0.045;−0.045,0.079] is
shown in Figure 2.8(b), and with a diagonal bandwidth diag(0.035,0.040) in
Figure 2.8(c). Both density estimates yield multi-modal densities. For the di-
agonal bandwidth matrix, the modes are all clearly separated. For the uncon-
strained matrix, the two largest modes are less clearly delimited from each
other, and the oblique contours suggest a directionality in the geographical
distribution. In the upper right corners of Figure 2.8(b)–(c) are the contours
of the kernel with the given bandwidth matrices: the unconstrained matrix
gives obliquely oriented kernels whereas the diagonal matrix gives kernels
which are oriented parallel to the coordinate axes. �
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(a)

(b) (c)

Figure 2.8 (a) Scatter plot of the geographical locations (longitude, latitude) of the
n = 222 Grevillea uncinulata specimens in south Western Australia. Observed loca-
tions are the green points, the ocean is blue, and the land mass is white. (b) Density
estimate with an unconstrained bandwidth [0.058,−0.045;−0.045,0.079]. (c) Den-
sity estimate with diagonal bandwidth diag(0.035,0.040). In the upper right corner
in (b)–(c) is the kernel function with the given bandwidth.

Example 2.7 As the target density remains unknown for the experimental
data example above, we analyse a synthetic example drawn from the dumb-
bell normal mixture 4

11 N((−2,2),I2)+
3

11 N((0,0), [0.8,−0.72;−0.72,0.8])+
4
11 N((2,−2),I2) introduced by Duong & Hazelton (2005b). Its contour
plot is given in Figure 2.9(a). The overall mixture is unimodal with steep,
oblique contours in the centre, with two shoulder regions which lead into
more circular contours with a shallower gradient in the tails. For an n =
1000 random sample, density estimators were computed using an uncon-
strained bandwidth [0.23,−0.19;−0.19,0.23] and a diagonal bandwidth
diag(0.093,0.089), shown in Figure 2.9(b)–(c). The unconstrained matrix
gives a unimodal density estimate as it orients the kernels appropriately, and
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which also gives elliptical tail contours. The diagonal matrix gives more cir-
cular tail contours, but it is unable to apply appropriate smoothing in the
oblique direction. This causes the upper shoulder region to be separated from
the central mode, and thence the appearance of a multimodal estimate. �

(a) (b) (c)

Figure 2.9 Potential gains of an unconstrained over a diagonal bandwidth matrix for
the dumbbell density. (a) Unimodal target dumbbell density. (b) Unimodal density
estimate with unconstrained bandwidth [0.23,−0.19;−0.19,0.23]. (c) Multimodal
density estimate with diagonal bandwidth diag(0.093,0.089). For (b)–(c), in the up-
per right corner in each panel is the kernel function with the given bandwidth.

There is much to gain from using unconstrained bandwidth matrices if
there is an important probability mass oriented away from the coordinate
axes. A number of studies (e.g., Wand & Jones, 1993, 1994; Duong & Hazel-
ton, 2003; Chacón & Duong, 2010; Chacón et al., 2011; Chacón & Duong,
2011) confirm this good theoretical performance for a wide range of target
density shapes and for a wide range of experimental data, including multi-
variate but non-spatial data. For this reason, we recommend the general use
of unconstrained bandwidth matrices for density estimation.

2.4 Advice for practical bandwidth selection

For the Grevillea data, the key question is how the bandwidth [0.058, –0.045;
–0.045, 0.079] is obtained. It is a trade-off between under- and oversmoothing
in kernel estimators, analogous to that for histograms in Figure 2.2.

Example 2.8 In Figure 2.10(a), a kernel density estimate with a bandwidth
H2 is undersmoothed, whereas in Figure 2.10(b), a bandwidth of H1/2 leads to
oversmoothing. Since the determinant of H is less than 1, then powers greater
than 1 lead to less smoothing, and powers less than 1 lead to more smoothing.
The bandwidth is the equivalent to the binwidth for histograms, so whilst
kernel estimators resolve many of problems of associated with histograms,
the key remaining one is the dependence on the smoothing parameters. �



24 DENSITY ESTIMATION

(a) (b)

Figure 2.10 Under- and oversmoothing of the density estimate of the Grevil-
lea data. (a) Undersmoothed density estimate with bandwidth H2. (b) Over-
smoothed density estimate with bandwidth H1/2. The base bandwidth is H =
[0.058,−0.045;−0.045,0.079].

Selecting an optimal amount of smoothing can be cast into a more formal
mathematical framework as an example of a bias-variance trade-off. A small
bandwidth/undersmoothing gives low bias as the corresponding density esti-
mate closely follows the data set at hand, but on a different data set would
give a substantially different density estimate, thus presenting a high variabil-
ity. A large bandwidth/oversmoothing has low variance as it tends to give the
same features from different data sets, but where each density estimate would
have high bias as it does not sufficiently take into account the data set at hand.

The question remains, which is/are the most suitable bandwidth(s) for the
given data set? These will be exposited in detail in Chapter 3 after we have
presented a sufficient mathematical framework, so we only briefly outline
them here. The normal scale ĤNS, maximal smoothing ĤMS and normal mix-
ture ĤNM selectors refer to those bandwidths that minimise the squared esti-
mation error of f̂ for the cases in which the unknown density f is replaced,
respectively, by a single normal, a beta, and a normal mixture density with
their parameters suitably estimated from the data. The main cross validation
selectors are unbiased ĤUCV, biased ĤBCV and smoothed ĤSCV, which are
variations of the usual leave-one-out cross validation approaches to estimate
the squared estimation error of f̂ . The main competitor to cross validation is
the plug-in selector ĤPI, which is based on an asymptotic approximation of
the squared estimation error.

Example 2.9 In Figure 2.11 are the density estimates of the Grevillea data
for these different bandwidth selectors (except for the maximal smoothing as
it is usually similar to the normal scale selector).



2.4. ADVICE FOR PRACTICAL BANDWIDTH SELECTION 25

(a) NS (b) NM

(c) UCV (d) BCV

(f) PI (f) SCV

Figure 2.11 Different bandwidth selectors for the density estimates of the Grevillea
data. (a) Normal scale ĤNS. (b) Normal mixture ĤNM. (c) Unbiased cross valida-
tion ĤUCV. (d) Biased cross validation ĤBCV. (e) Plug-in ĤPI. (f) Smoothed cross
validation ĤSCV.
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The normal scale ĤNS and maximal smoothing ĤMS selectors are efficient
to compute but tend to produce oversmoothed density estimates, so they are
useful for a quick visualisation of the overall trends in the data. The normal
mixture selector ĤNM offers a richer class of parametric distributions than
the normal scale and maximal smoothing selectors, but for the Grevillea data,
the normal mixture fit is unable to appropriately model the data set and so
gives an inappropriate bandwidth matrix. In general, it has not shown suffi-
cient promise compared to the cross validation and plug-in selectors. These
latter are the most widely used classes of bandwidth selectors for density es-
timation, due to their well-established theoretical and empirical properties.

Unbiased cross validation ĤUCV, as it does not rely on asymptotic expan-
sions, can be less biased than other selectors, though this smaller bias tends
to result in more variable, undersmoothed density estimates. If a density has
many isolated modes then this undersmoothing may be useful. The biased
cross validation ĤBCV is not advised in general as its lack of an independent
pilot bandwidth implies that it is less competitive than the plug-in ĤPI and
smoothed cross validation ĤSCV. These latter two (and their slight variants)
are the most widely recommended bandwidth selectors, with a small advan-
tage to the computationally faster plug-in methods. �

Example 2.10 We repeat this comparison of these different bandwidth selec-
tors for the 3-dimensional stem cell data in Figure 2.12. The normal scale ĤNS
and normal mixture ĤNM and unbiased cross validation ĤUCV yield similar
density estimates. The decile contours for these three selectors are ellipsoidal
and evenly spaced, and indicating an oversmoothed estimate. The BCV se-
lector has been omitted, since a computer implementation is not available for
3-dimensional data. For the PI and SCV selectors, more details of the data
structure are visible due to the irregularly shaped and spaced contour shells,
and because the upper left mode is more peaked. �

Whilst it is inadvisable to base these general recommendations on the
sole analyses of the Grevillea and the stem cell data in Figures 2.11 and 2.12,
these recommendations have been verified in numerous, comprehensive com-
parisons of the different bandwidth selectors, see Duong & Hazelton (2005b);
Chacón & Duong (2010, 2011).

2.5 Squared error analysis

So far we have kept the mathematics as minimal as possible in our exposi-
tion, to make it an amenable introduction for a wider audience. In this section
we start to address the most crucial factor for kernel estimation, i.e., the op-
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(a) NS/NM (b) UCV

(c) PI (d) SCV

Figure 2.12 Different bandwidth selectors for the density estimates of the stem cell
data. (a) Normal scale ĤNS/normal mixture ĤNM. (b) Unbiased cross validation
ĤUCV. (c) Plug-in ĤPI. (d) Smoothed cross validation ĤSCV.

timal choice of smoothing for the class of unconstrained matrices. Despite
the apparent complexity of this class, once suitable mathematical tools are
employed its analysis is not more complicated than for the class of diagonal
bandwidth matrices.

To establish a notion of an optimal bandwidth, we require a discrepancy
measure. For density estimation at a fixed point xxx, since the target density
f (xxx) is a real number, the most common way to measure the performance of
the kernel density estimator f̂ (xxx;H) is through the mean squared error (MSE),
which allows for the variance plus squared bias decomposition

MSE{ f̂ (xxx;H)}= E{[ f̂ (xxx;H)− f (xxx)]2}= Var{ f̂ (xxx;H)}+Bias2{ f̂ (xxx;H)}
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where

Var{ f̂ (xxx;H)}= E
{
[ f̂ (xxx;H)−E{ f̂ (xxx;H)}]2

}
Bias{ f̂ (xxx;H)}= E{ f̂ (xxx;H)}− f (xxx).

The MSE{ f̂ (xxx;H)} is a local, point-wise, discrepancy measure. In density
estimation, the interest usually lies in the global behaviour of f̂ as an estimator
of f . To measure the global performance, a possibility is to integrate the MSE
with respect to xxx, to obtain (after an application of Fubini’s theorem) the mean
integrated squared error (MISE),

MISE{ f̂ (·;H)}= E
∫
Rd
{ f̂ (xxx;H)− f (xxx)}2dxxx.

The MISE is the expected (squared) L2 distance between f̂ and f . The L2
error is the most studied approach because it affords a simple mathematical
treatment. Other Lp distances are possible here, with some appealing reasons
for using the L1 distance (Devroye & Györfi, 1985).

The variance-squared bias decomposition of the MSE now leads to a de-
composition of the MISE into integrated variance (IV) and integrated squared
bias (ISB), namely

MISE{ f̂ (·;H)}= IV{ f̂ (·;H)}+ ISB{ f̂ (·;H)}

where

IV{ f̂ (·;H)}=
∫
Rd

Var{ f̂ (xxx;H)}dxxx

ISB{ f̂ (·;H)}=
∫
Rd

Bias2{ f̂ (xxx;H)}dxxx.

The MISE is a non-stochastic quantity that describes the performance of
the kernel density estimator with respect to a typical sample from the true
density. This is due to the expected value included in its definition. However,
in some situations it is of interest to measure how the kernel estimator per-
forms, not for an average sample, but for the data that we have at hand. This
is the case, for instance, when the goal is to compare the kernel estimator
based on different data-based methods to select the bandwidth matrix. To that
end, a stochastic discrepancy measure depending on the data at hand is the
integrated squared error (ISE), defined as

ISE{ f̂ (·;H)}=
∫
Rd
{ f̂ (xxx;H)− f (xxx)}2dxxx.
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We emphasise that, whereas the MISE is a real number, the ISE is a random
variable. Fundamental central limit theorems for the ISE were obtained by
Hall (1984) while Jones (1991) explored the respective advantages and dis-
advantages of the MISE and ISE as the target discrepancy measure.

Convolutions play a key role in the analysis of kernel estimators. The con-
volution of two integrable functions f and g is a new function f ∗ g, defined
as ( f ∗g)(xxx) =

∫
Rd f (xxx− yyy)g(yyy)dyyy. If XXX and YYY are independent random vari-

ables with densities f and g, respectively, then XXX +YYY has density f ∗ g. The
notion of convolution of functions can be extended to the convolution of two
probability distributions. A kernel density estimator can be considered to be
the convolution of the probability measure induced by the scaled kernel KH
with the empirical distribution of the data. This is an alternative mathematical
statement of the smoothing action of the kernel on the data, for it reveals the
kernel density estimator as the density of the distribution resulting from per-
turbing the sample data points with independent random variables distributed
according to KH.

Then, the expected value and the variance of the kernel density estimator
can be written as

E{ f̂ (xxx;H)}= (KH ∗ f )(xxx)

Var{ f̂ (xxx;H)}= n−1{(K2
H ∗ f )(xxx)− (KH ∗ f )(xxx)2} (2.3)

as shown in the seminal papers of Rosenblatt (1956) and Parzen (1962). Here,
K2

H is short for (KH)
2, that is, squaring takes place after scaling. Combining

the two equalities in Equation (2.3) we obtain a more explicit formula for the
MSE, namely

MSE{ f̂ (xxx;H)}= n−1{(K2
H ∗ f )(xxx)− (KH ∗ f )(xxx)2}+{(KH ∗ f )(xxx)− f (xxx)}2.

Integrating over xxx, it follows that

MISE{ f̂ (·;H)}=
{

n−1|H|−1/2R(K)−n−1R(KH ∗ f )
}

+
{

R(KH ∗ f )−2
∫
Rd
(KH ∗ f )(xxx) f (xxx)dxxx+R( f )

}
(2.4)

where R(a) =
∫
Rd a(xxx)2 dxxx for a square integrable function a : Rd → R, see

Wand & Jones (1993). The first set of braces in Equation (2.4) contains the
expression for the IV, the second the ISB.

Whilst Equation (2.4) is an exact closed form expression, its dependence
on the bandwidth is not fully elucidated as the latter enters implicitly via
the integrals involving the scaled kernel. In order to render the effect of the
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bandwidth more apparent, it is useful to derive an asymptotic approximation
to the MISE, which is called the asymptotic mean integrated squared error
(AMISE), and satisfies MISE{ f̂ (·;H)} ∼ AMISE{ f̂ (·;H)} as n→ ∞. Here,
the tilde is used as a binary operator a∼ b to indicate that a = an and b = bn

are asymptotically equivalent sequences, i.e., that an/bn→ 1 as n→ ∞.

2.6 Asymptotic squared error formulas

We present the arguments leading to the AMISE formula. In order to make the
exposition easier to follow for non-experts, and to hint at the tools involved,
some details are treated here in a slightly heuristic way. For the interested
reader, a rigorous mathematical proof is given in Section 2.9.

The main mathematical tool used to obtain the desired asymptotic ap-
proximation is Taylor’s theorem. This is a well-known result, but we require
a particular formulation that fits our needs as the infinitesimal entity involved
in our multivariate expansions is not a real number or a vector, as is usual, but
a positive definite matrix H, either on its own or in the matrix product H1/2zzz
for some fixed zzz ∈ Rd .

First we require a systematic way of organising the set of all the par-
tial derivatives of a given order. Starting with the differential operator with
respect to xxx, which we denote as D= (∂/∂x1, . . . ,∂/∂xd), the r-th order dif-
ferential operator D⊗r is defined as the formal r-fold Kronecker product of D
with itself, using the convention that a multiplication of two first order differ-
entials is understood as being a second order differential: (∂/∂xi)(∂/∂x j) =
∂ 2/(∂xi∂x j). For example, the second order differential operator, containing
all the mixed partial derivatives of order two, can be expressed in a vector as
D⊗D, and this is related to the usual d×d Hessian matrix H via the identity
D⊗D= vecH, where vec is the vectorization operator which acts on a matrix
by stacking its columns on top of one another. So the two forms of derivatives
contain exactly the same partial derivatives albeit arranged in a different way.

Moreover, this notation is consistent with the aforementioned multiplica-
tion convention, since the Hessian matrix can be expressed as H= DD> and
one of the properties of the Kronecker product is that vec(aaabbb>) = bbb⊗ aaa for
any aaa,bbb ∈ Rd . See Appendix B for a brief summary of the properties of the
vec operator, the Kronecker product and other special matrices, which we will
reuse often in the sequel.

There does not appear (yet) to be much gain in rewriting the Hessian
matrix in this way. In order to establish the theoretical properties of ker-
nel estimators with unconstrained bandwidth matrices, the usual techniques
(e.g., Wand, 1992; Wand & Jones, 1993, 1994) involved element-wise partial
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derivative analyses, which then required complex indexing operations to map
the individual elements to its matrix form. These authors thus concentrated
on diagonal bandwidth matrices in order to reduce the complexity of the cal-
culations. This algebraic complexity explains, in large part, the lack of results
for kernel estimators with unconstrained bandwidths. With vectorised deriva-
tives, we are able to analyse the unconstrained case without requiring more
complexity than the constrained cases.

Using these vectorised derivatives it is possible to write the Taylor expan-
sion of an r-times continuously differentiable function f at a point xxx+ aaa for
a small perturbation aaa as

f (xxx+aaa) =
r

∑
j=0

1
j!
D⊗ j f (xxx)>aaa⊗ j +Re(aaa), (2.5)

where xxx,aaa ∈ Rd and the remainder Re(aaa) is of order smaller than ‖aaa‖r as
aaa→ 0, which we express as o(‖aaa‖r), meaning that Re(aaa)/‖aaa‖r→ 0 as aaa→ 0.
Here ‖aaa‖= (aaa>aaa)1/2 denotes the Euclidean norm of aaa.

Finally, in order to use the Taylor expansions to find an asymptotic ex-
pression for the MISE we require the following assumptions:

Conditions A
(A1) The density function f is square integrable and twice differentiable,

with all of its second order partial derivatives bounded, continuous and
square integrable.

(A2) The kernel K is square integrable, spherically symmetric and with a
finite second order moment; this means that

∫
Rd zzzK(zzz)dzzz = 0 and that∫

Rd zzz⊗2K(zzz)dzzz = m2(K)vecId with m2(K) =
∫
Rd z2

i K(zzz)dzzz for all i =
1, . . . ,d.

(A3) The bandwidth matrices H = Hn form a sequence of positive definite,
symmetric matrices such that vecH→ 0 and n−1|H|−1/2→ 0 as n→ ∞.

Once these tools have been established, we start by developing an asymp-
totic form for the bias. After a change of variables, the expected value of
f̂ (xxx;H) can be written as

E{ f̂ (xxx;H)}=
∫
Rd

KH(xxx− yyy) f (yyy)dyyy =
∫
Rd

K(zzz) f (xxx−H1/2zzz)dzzz. (2.6)

What is required to proceed is a Taylor expansion of f (xxx−H1/2zzz) around
f (xxx). By applying Equation (2.5) we obtain

f (xxx−H1/2zzz) = f (xxx)−D f (xxx)>H1/2zzz+ 1
2D
⊗2 f (xxx)>(H1/2zzz)⊗2 +o(‖vecH‖).



32 DENSITY ESTIMATION

Noting that (H1/2zzz)⊗2 = (H1/2)⊗2zzz⊗2 and taking into account the condition
(A2) on K, substituting this expansion of f (xxx−H1/2zzz) into Equation (2.6)
yields

E{ f̂ (xxx;H)}= f (xxx)+ 1
2D
⊗2 f (xxx)>(H1/2)⊗2m2(K)vecId +o(‖vecH‖)

= f (xxx)+ 1
2 m2(K)D⊗2 f (xxx)> vecH+o(‖vecH‖),

where the formula vec(ABC) = (C>⊗A)vecB, for conformable matrices
A,B,C, was used for the second equality (see Appendix B). From this, squar-
ing and integrating with respect to xxx we obtain

ISB{ f̂ (·;H)}= 1
4 m2(K)2{vec>R(D⊗2 f )

}
(vecH)⊗2 +o(‖vecH‖2) (2.7)

where, for an arbitrary vector-valued function aaa : Rd → Rp, we denote
R(aaa) =

∫
Rd aaa(xxx)aaa(xxx)>dxxx ∈Mp×p, that is,

R(D⊗2 f ) =
∫
Rd

D⊗2 f (xxx)D⊗2 f (xxx)>dxxx ∈Md2×d2 .

Equation (2.7) presents the dominant term of the ISB as a (Kronecker)
square in vecH. Using again the properties of the vec operator and the Kro-
necker product it is possible to write this term in alternative forms, like

1
4 m2(K)2{vec>R(D⊗2 f )

}
(vecH)⊗2 = 1

4 m2(K)2(vec>H)R(D⊗2 f )vecH

= 1
4 m2(K)2

∫
Rd

tr2{HH f (xxx)}dxxx

(see Chacón & Duong, 2010). The first equality shows the nature of the ISB
as a quadratic form in vecH, and the second equality gives the expression
provided for the first time in Wand (1992).

Regarding the IV, starting from Equation (2.3) and integrating with re-
spect to xxx we have, for the first term,

n−1
∫
Rd
(K2

H ∗ f )(xxx)dxxx = n−1
∫
Rd

∫
Rd

KH(xxx− yyy)2 f (yyy)dyyydxxx

= n−1|H|−1/2
∫
Rd

∫
Rd

K(zzz)2 f (xxx−H1/2zzz)dzzzdxxx

= n−1|H|−1/2R(K) (2.8)

where the second equality follows from the change of variables zzz=H−1/2(xxx−
yyy) and the third one from Fubini’s theorem. For the second term in Equa-
tion (2.3) we can take advantage of the previous calculations for E{ f̂ (xxx;H)}



2.6. ASYMPTOTIC SQUARED ERROR FORMULAS 33

to immediately obtain n−1 ∫
Rd (KH ∗ f )(xxx)2dxxx = n−1R( f )+o(n−1). Since our

assumption vecH→ 0 implies |H| → 0 by Hadamard’s inequality (see Mag-
nus & Neudecker, 1999, Chapter 11), in view of Equation (2.8) it follows that
this second term in the IV is of a smaller order than the first one. Therefore,

IV{ f̂ (·;H)}= n−1|H|−1/2R(K)+o(n−1|H|−1/2). (2.9)

Combining Equations (2.7) and (2.9), it follows that an asymptotic approxi-
mation to the MISE can be written as

AMISE{ f̂ (·;H)}= n−1|H|−1/2R(K)+ 1
4 m2(K)2{vec>R(D⊗2 f )

}
(vecH)⊗2

= n−1|H|−1/2R(K)+ 1
4 m2(K)2(vec>H)R(D⊗2 f )vecH

= n−1|H|−1/2R(K)+ 1
4 m2(K)2

∫
Rd

tr2{HH f (xxx)}dxxx.

(2.10)

Comparing the AMISE to the MISE in Equation (2.4), we note that the
leading term n−1|H|−1/2R(K) of the IV is virtually indistinguishable asymp-
totically from its exact form n−1|H|−1/2R(K)−n−1R(KH ∗ f ) for any density
f . This excellent approximation is difficult to improve on, and there is no ef-
fect on bandwidth selection, at least in an asymptotic sense, in changing the
exact variance for its leading term (see Chacón & Duong, 2011, Theorem 1).
In contrast, the asymptotic ISB is less uniformly accurate and its accuracy
depends on the structure of f . This implies that the methods which we subse-
quently explore rely on refining this ISB approximation.

In deriving Equation (2.10), only the condition vecH→ 0 on the sequence
of bandwidth matrices was needed. If we additionally impose n−1|H|−1/2→ 0
we obtain that AMISE{ f̂ (·;H)}→ 0. These two conditions on the bandwidth
are usually assumed to guarantee consistency of the kernel density estima-
tor. In fact, reasoning as in Theorem II.2 in Chapter 4 of Bosq & Lecoutre
(1987), it can be shown that condition (A3) on the bandwidth is necessary
and sufficient so that the MISE converges to zero for any density, with the
sole assumption that f is square integrable. And even this assumption on f is
not necessary to ensure consistency in the L1 context (Devroye, 1983).

In comparison to the exact MISE in Equation (2.4), in the AMISE, the
variance-bias trade-off is more apparent. When the bandwidth has small en-
tries, the bias tends to be small as well, whilst the variance is inflated. When
the bandwidth is large, in the sense of having a large determinant, the bias
tends also to be large (again due to Hadamard’s inequality) with a corre-
spondingly diminishing variance. This mathematically expresses the effect
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of the bandwidth on the kernel density estimator in the empirically observed
under- and oversmoothing in Figure 2.11.

Equation (2.10) represents a general formulation for the asymptotic ap-
proximation of the MISE, since it is valid with unconstrained bandwidths and
for an arbitrary dimension. By reducing it to specific cases it is possible to
recover some of the more usual AMISE formulas. In the univariate case with
H = h2, Equation (2.10) gives the more familiar expression

AMISE{ f̂ (·;h)}= n−1h−1R(K)+ 1
4 m2(K)2R( f ′′)h4

(Rosenblatt, 1956, 1971). For comparison, the role that R( f ′′) =
∫
R f ′′(x)2dx

traditionally plays as a measure of the roughness/curvature of the density
is now played in the multivariate case by the (symmetric) curvature matrix
R(D⊗2 f ) ∈Md2×d2 , which includes as its entries all the terms of the form

ψi j,k` =
∫
Rd

∂ 2 f (xxx)
∂xi∂x j

∂ 2 f (xxx)
∂xk∂x`

dxxx

for all possible choices of i, j,k, ` ∈ {1,2, . . . ,d}.
In the bivariate case, an explicit formula for R(D⊗2 f ) is

R(D⊗2 f ) =
[

R11 R12

R21 R22

]
=


ψ11,11 ψ11,12 ψ11,21 ψ11,22
ψ12,11 ψ12,12 ψ12,21 ψ12,22

ψ21,11 ψ21,12 ψ21,21 ψ21,22
ψ22,11 ψ22,12 ψ22,21 ψ22,22

 ∈M22×22

where each block Ri j is a 2×2 matrix, given by

Ri j =

[
ψi1, j1 ψi1, j2
ψi2, j1 ψi2, j2

]
∈M2×2.

More generally, it can be shown that R(D⊗2 f ) can be written using d× d
blocks, of dimension d×d each, where the (i, j)th block is the matrix Ri j =
[ψik, j`]

d
k,`=1 ∈Md×d .

Still in the single-parameter case where H = h2Id ∈ A, but in the mul-
tivariate context, observe that (D⊗ D)> vecId = D>D = trH ≡ 4, with
4=∑

d
i=1 ∂ 2/(∂x2

i ) denoting the Laplacian operator, i.e., the trace of the Hes-
sian operator. Then, the AMISE formula in Equation (2.10) simplifies to

AMISE{ f̂ (·;h)}= n−1h−dR(K)+ 1
4 m2(K)2R(4 f )h4. (2.11)

So the effect of using a constrained H ∈ A, as opposed to an unconstrained
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one, is mainly reflected in the ISB. Since tr{(D⊗D)(D⊗D)>}= (D>D)2 =
42, it follows that R(4 f ) = trR(D⊗2 f ). Instead of taking into account the
full curvature matrix R(D⊗2 f ), only its trace contributes to the ISB.

For a diagonal bandwidth H = diag(h2
1, . . . ,h

2
d) ∈ D, writing hhh =

(h2
1, . . . ,h

2
d) ∈ Rd and reasoning as above, it is straightforward to verify that

AMISE{ f̂ (·;hhh)}= (nh1 · · ·hd)
−1R(K)+ 1

4 m2(K)2{diagR(D⊗2 f )}>hhh⊗2

(2.12)
where diagR(D⊗2 f ) ∈ Rd2

is the vector comprising the elements from the
main diagonal of the curvature matrix R(D⊗2 f ). Using a diagonal bandwidth
matrix implies that, asymptotically, only the diagonal of the curvature matrix
(as opposed to the full curvature matrix) influences the ISB of the kernel
density estimator.

2.7 Optimal bandwidths

The optimal bandwidth is often defined as the minimiser of the MISE,
i.e., HMISE = argminH∈F MISE{ f̂ (·;H)}, where the minimisation is taken
over the class F. As the MISE is complicated to compute due to the pres-
ence of the integrals and convolutions, a simpler proxy would be HAMISE =
argminH∈F AMISE{ f̂ (·;H)} as an asymptotically optimal target bandwidth,
since it can be shown that HMISE and HAMISE are asymptotically equivalent
as n→ ∞. In any case, it is worth pointing out that these optimal bandwidths
depend on the unknown density f , as they are defined in terms of the true es-
timation error, and therefore it is not possible to compute them from the data.
This is why they are also known as oracle bandwidths.

If the optimal bandwidth is sought among the class A, then a further ad-
vantage of the asymptotic surrogate is that it has an explicit form, since the
AMISE approximation in Equation (2.11) is minimised at

hAMISE =
[
dR(K)

/
{m2(K)2R(4 f )}

]1/(d+4)n−1/(d+4).

If a diagonal bandwidth H = diag(hhh) is employed, where hhh = (h2
1, . . . ,h

2
d) ∈

Rd , then Wand & Jones (1994) showed that in the multivariate case an explicit
form for the optimal hhhAMISE exists only for d = 2, where

hhhAMISE =
(
{ψ22,22/ψ11,11}1/8, {ψ11,11/ψ22,22}1/8)
×
[
R(K)

/{
m2(K)2(ψ

1/2
11,11ψ

1/2
22,22 +ψ11,22)

}]1/6n−1/6.

Unfortunately, there exists no explicit formula for the unconstrained asymp-
totic oracle bandwidth HAMISE either. However, it can be shown (see Section
2.9.2 below) that HAMISE is also of order n−2/(d+4), as its constrained coun-
terparts.
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2.8 Convergence of density estimators

From a data analysis point of view, the closeness of the density estimate f̂ to
the target density f is an important feature to take into account. It is natural
then to consider the rate at which MISE{ f̂ (·;H)} tends to zero. This MISE
convergence implies that the density estimator has various desirable proper-
ties, among which the most important are that f̂ is asymptotically unbiased
and is consistent. This assures that, at least in the limiting case, kernel density
estimators perform well.

Under (A1)–(A3) in Conditions A, it has been asserted above that the opti-
mal bandwidth is of order n−2/(d+4). This implies that the minimal MISE rate
is infH∈F MISE{ f̂ (·;H)} = O(n−4/(d+4)). In comparison, the minimal MISE
rate of convergence for a histogram density estimator f̂hist is O(n−2/(d+2)),
which is uniformly slower than the n−4/(d+4) rate for a kernel density esti-
mator for all d, see Simonoff (1996, p. 97, Equation (4.2)). This is a formal
statement of the asymptotic improvement of the multivariate kernel estima-
tors over histograms. The discreteness of the latter, apart from providing a less
aesthetically pleasing visualisation, is also the main source of the slowness in
their convergence to the target density in comparison to the former.

This O(n−4/(d+4)) rate for kernel density estimators is uniformly slower
than the parametric rate O(n−1) for all d, implying that non-parametric ker-
nel estimation is a more difficult problem than its parametric counterpart and
hence (i) requires larger sample sizes to achieve the same accuracy or (ii) for
the same sample size, achieves a lower level of accuracy. The fast paramet-
ric rate of convergence is valid only if a correctly specified parametric form
is used. In the case of a misspecified parametric form, the rate is not neces-
sarily faster than for non-parametric estimators, and the former can even be
shown to be inconsistent under certain misspecifications. One of the major
advantages of the non-parametric approach is its consistency under minimal
assumptions.

The O(n−4/(d+4)) rate implies that as the dimension d increases, kernel es-
timation becomes increasingly difficult. This is usually referred to as the curse
of dimensionality, a term originally coined by Bellman (1961). The prob-
lem is not that the rate becomes slower for higher dimensions, because this
can be avoided by using superkernels or infinite-order kernels (see Politis &
Romano, 1999, Remark 5). The intrinsic difficulty in high dimensions relies
on the fact that kernel estimators are based on local neighbourhoods, where
the extent of such neighbourhoods is determined by the fixed bandwidth ma-
trix. The sparsity of data in higher dimensions implies that increasingly larger
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neighbourhoods are required to include a substantial enough effective sample
size to produce a reliable non-parametric density estimate.

Nevertheless, kernel smoothing plays an important role for low-to-
moderate dimensional data. Examples include spatial analysis for microscopy
images (2D/3D spatial + 1 grey level) and the analysis of geographical
trends/clusters/filaments, where the data is inherently low dimensional, and
where increasing the number of dimensions does not necessarily lead to bet-
ter statistical analysis since it implies that visualisation is then no longer easy
to interpret. Indeed, the visual component of kernel smoothing for exploratory
data analysis is crucial for many non-mathematician users.

Moreover, in some current advanced applications of kernel smoothing
(which are described in Chapters 6–7), the main end goal is not to obtain
a precise estimation of the entire density function, but to use it as an interme-
diate tool to discover the regions of interest, e.g. modal regions, density ridges
and clusters. In these cases, kernel smoothers have been demonstrated to be
useful for high-dimensional data, and even for functional/infinite-dimensional
data, e.g., Ciollaro et al. (2016).

2.9 Further mathematical analysis of density estimators

2.9.1 Asymptotic expansion of the mean integrated squared error

We provide a formal technical proof for the asymptotic expansion of the
MISE. The ‘heuristic’ component in the presentation provided in Section 2.6
concerns mainly the issue of why the smaller order terms in the pointwise
expansions can be discarded after several integration steps, and this is treated
in a more careful and rigorous way here. All the asymptotic arguments in this
monograph could be formalised in a similar way, but we only give the details
for the base case of density estimation.

Theorem 1 Suppose that (A1)–(A3) in Conditions A hold.
(i) The integrated squared bias of the kernel density estimator can be ex-
panded as

ISB{ f̂ (·;H)}= 1
4 m2(K)2{vec>R(D⊗2 f )

}
(vecH)⊗2 +o

(
‖vecH‖2).

(ii) The integrated variance of the kernel density estimator can be expanded
as

IV{ f̂ (·;H)}= n−1|H|−1/2R(K)+o
(
n−1|H|−1/2).

Proof Since K is symmetric, a Taylor expansion with the remainder in inte-
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gral form gives

E{ f̂ (xxx;H)}− f (xxx)

=
∫
Rd

∫ 1

0
(1− t)D⊗2 f (xxx− tH1/2zzz)>(H1/2)⊗2zzz⊗2K(zzz)dtdzzz

= uuu(xxx;H)> vec(H1/2⊗H1/2),

where uuu(xxx;H) =
∫
Rd

∫ 1

0
(1− t)K(zzz)

{
zzz⊗2⊗D⊗2 f (xxx− tH1/2zzz)

}
dtdzzz ∈ Rd4

.

We have used vec(ABC) = (C>⊗A)vecB in the previous display.
For every fixed xxx ∈ Rd , using (A1) we have∥∥(1−t)K(zzz)

{
zzz⊗2⊗D⊗2 f (xxx−tH1/2zzz)

}∥∥≤ (1−t)‖zzz‖2|K(zzz)| sup
xxx∈Rd
‖D⊗2 f (xxx)‖

with
∫
Rd

∫ 1
0 (1− t)‖zzz‖2|K(zzz)|dtdzzz < ∞ by (A2). By the Dominated Con-

vergence Theorem it follows that uuu(xxx;H) → 1
2 m2(K)vecId ⊗D⊗2 f (xxx) as

vecH→ 0.
Moreover, we can write ISB{ f̂ (·;H)} = www(H)>

{
vec
(
H1/2⊗H1/2

)}⊗2

with www(H) =
∫
Rd uuu(xxx;H)⊗2dxxx ∈ Rd8

. Now, the Cauchy-Schwarz inequality
yields, for every xxx ∈ Rd ,

‖uuu(xxx;H)⊗2‖= ‖uuu(xxx;H)‖2

≤
{∫

Rd

∫ 1

0
(1− t)‖zzz‖2|K(zzz)|dtdzzz

}
×
{∫

Rd

∫ 1

0
(1− t)‖zzz‖2|K(zzz)|

∥∥D⊗2 f (xxx− tH1/2zzz)
∥∥2 dtdzzz

}
.

The function on the right-hand side of the previous display, when considered
as a function of xxx, has the integral

1
4

{∫
Rd
‖zzz‖2|K(zzz)|dzzz

}2 ∫
Rd

∥∥D⊗2 f (xxx)
∥∥2dxxx,

which is finite by (A1)–(A2). Again by an application of the Dominated
Convergence Theorem, we obtain that www(H)→ www0 =

1
4 m2(K)2 ∫

Rd

{
vecId⊗

D⊗2 f (xxx)
}⊗2dxxx as vecH→ 0. Since{

vec> Id⊗D⊗2 f (xxx)>
}⊗2{vec

(
H1/2⊗H1/2)}⊗2

=
[{

vec> Id⊗D⊗2 f (xxx)>
}

vec
(
H1/2⊗H1/2)]⊗2

=
[

vec
{
D⊗2 f (xxx)>

(
H1/2⊗H1/2)vecId

}]⊗2

=
{
D⊗2 f (xxx)> vecH

}⊗2
=
{
D⊗2 f (xxx)>

}⊗2
(vecH)⊗2
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we have www>0
{

vec
(
H1/2⊗H1/2

)}⊗2
= 1

4 m2(K)2
{

vec>R(D⊗2 f )
}
(vecH)⊗2,

so to complete the proof of part (i) we must show that ISB{ f̂ (·;H)} −
www>0
{

vec
(
H1/2 ⊗ H1/2

)}⊗2
= {www(H) − www0}>

{
vec
(
H1/2 ⊗ H1/2

)}⊗2 is
o
(
‖vecH‖2

)
. Furthermore, noting from the definition of the scalar product

that ∣∣∣{www(H)−www0}>
{

vec
(
H1/2⊗H1/2)}⊗2

∣∣∣
≤ ‖www(H)−www0‖·

∥∥vec
(
H1/2⊗H1/2)∥∥2

and taking into account that we have already shown that ‖www(H)−www0‖→ 0 as
vecH→ 0, it suffices to show that ‖vec(H1/2⊗H1/2)‖2/‖vecH‖2 is bounded.

We have ‖vec(H1/2⊗H1/2)‖2= vec>(H1/2⊗H1/2)vec(H1/2⊗H1/2) =
tr(H⊗H) = tr2 H and, similarly, ‖vecH‖2= tr(H2). Since from the Schur
decomposition we can express tr(Hk) = ∑

d
i=1 λ k

i , where λ1, . . . ,λd > 0 denote
the eigenvalues of H, we arrive at 1≤‖vec(H1/2⊗H1/2)‖2/‖vecH‖2≤ d (the
second inequality is due to the Cauchy-Schwarz inequality), which finishes
the proof of part (i).

To show (ii), recall that IV{ f̂ (·;H)} = n−1|H|−1/2R(K)− n−1R(KH ∗ f )
from Equation (2.4). Hence it is enough to show that the sequence R(KH ∗ f )
is bounded. A change of variables, together with Cauchy-Schwarz inequality
and Fubini’s theorem, implies that

R(KH ∗ f ) =
∫
Rd
(KH ∗ f )(xxx)2dxxx =

∫
Rd

{∫
Rd

K(zzz) f (xxx−H1/2zzz)dzzz
}2

dxxx

≤
{∫

Rd
|K(zzz)|dzzz

}
·
{∫

Rd

∫
Rd
|K(zzz)| f (xxx−H1/2zzz)2 dzzzdxxx

}
=

{∫
Rd
|K(zzz)|dzzz

}2

R( f ),

which completes the proof. �

2.9.2 Asymptotically optimal bandwidth

Although there is no explicit formula for the asymptotically optimal band-
width HAMISE, it is possible to give a more detailed description of its form, as
shown next.

Begin by writing H= λA for a symmetric, positive definite matrix A with
|A|= 1 and λ > 0. This is achieved by taking λ = |H|1/d and A = |H|−1/dH.
In this form, λ represents the size of H and A accounts for its orientation.
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Then, from Equation (2.10),

AMISE(λA) = n−1
λ
−d/2R(K)+ 1

4 m2(K)2Q(A)λ 2, (2.13)

where Q(A) = (vec>A)R(D⊗2 f )vecA > 0, since it is a quadratic form in
vecA and R(D⊗2 f ) is positive definite. For every fixed A, the value of λ =
λ0(A) that minimises Equation (2.13) is

λ0(A) =
[
dR(K)

/
{m2(K)2Q(A)}

]2/(d+4)n−2/(d+4). (2.14)

Substituting the value of λ0 in Equation (2.14) into Equation (2.13) gives

min
λ>0

AMISE(λA) =
d +4

4

{
d−1m2(K)2R(K)4/dQ(A)

}d/(d+4)
n−4/(d+4).

From this, it follows that the optimal choice of the orientation A is A0 =
argminA∈F, |A|=1 Q(A). Note that A0 does not depend on the sample size n,
which yields the O(n−4/(d+4)) minimal MISE rate announced in Section 2.8.
Moreover, this also indicates that the orientation of the optimal bandwidth
only depends on the ISB, whilst its magnitude should be taken to balance the
IV and the ISB.

Finally the asymptotically optimal bandwidth can be written as HAMISE =
λ0(A0)A0 = C0n−2/(d+4) for some symmetric, positive definite matrix C0
which does not depend on n, which reveals that the optimal bandwidth is
of order n−2/(d+4).

2.9.3 Vector versus vector half parametrisations

Initially in the literature the squared error formulas were expressed in terms
of the vector half operator vechH, which stacks the lower triangular half of
the d×d matrix H into a 1

2 d(d+1)-vector rather than vecH as we have done.
Compare, for example,

vech
[

h2
1 h12

h12 h2
2

]
=
[
h2

1 h12 h2
2
]>

vec
[

h2
1 h12

h12 h2
2

]
=
[
h2

1 h12 h12 h2
2
]>

.

The integrated squared bias from Equation (2.7) can be rewritten as

1
4 m2(K)2(vec>H)R(D⊗2 f )vecH

= 1
4 m2(K)2(vech>H)D>d

{∫
R
[vechH f (xxx)][vech>H f (xxx)]dxxx

}
Dd(vechH)
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where Dd is the d-th order duplication matrix such that Dd vechH = vecH for
a symmetric matrix H, see Magnus & Neudecker (1999, Chapter 3.8, pp. 48–
52). This second form has the advantage of being the minimal quadratic form,
and

∫
R [vechH f (xxx)][vech>H f (xxx)]dxxx does not appear to be unduly more com-

plicated than the more concise R(D⊗2 f ). Indeed Wand (1992); Wand & Jones
(1994); Duong & Hazelton (2005a,b) made advances in bandwidth selectors
using this vector half form.

The limitations of these vector half expressions become apparent when
attempting to develop the algorithms for data-based unconstrained selec-
tors. To progress, a more tractable method of denoting higher order deriva-
tives of f is required. By drawing on the vectorised derivatives, the required
density derivative functionals can be expressed as ψψψ2r = E{D⊗2r f (XXX)}. As
ψψψ2r = (−1)r vecR(D⊗r f ), then they are naturally paired with vecH rather
than vechH.

Furthermore, derivatives with respect to vecH are easier to calculate from
the identification table of Magnus & Neudecker (1999, Table 9.6.2, p. 176) as
its entries are expressed in terms of differentials d vecH. On the other hand,
derivatives with respect to vechH must always include the duplication matri-
ces Dd to transform the d vecH to d vechH differentials.
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Chapter 3

Bandwidth selectors for density
estimation

The selection of the bandwidth (or smoothing parameter) is the single most
crucial factor in determining the performance of a kernel estimator. So much
so that this single question is the generator of a significant proportion of the
literature. Well-written reviews of the main methodologies available for the
univariate case can be found in Berlinet & Devroye (1994), Cao et al. (1994)
and Jones et al. (1996a,b) or, more recently, in Heidenreich et al. (2013). In
the previous chapter, we gave some preliminary advice for practical band-
width selection. In this chapter, we examine the different bandwidth selectors
in more detail and elucidate the reasons for this advice.

The phrase ‘bandwidth selection’ may seem unusual, and the reader may
ask why it is not called bandwidth estimation. Population parameters, e.g.,
the density function f , depend only on the population distribution, and not on
the data. An estimator aims to determine the value of a parameter from a data
sample, e.g., f̂ (·;H) estimates f . As the bandwidth is an inherent quantity of
f̂ (·;H), and although we also refer to it as the smoothing parameter, it is not
a population parameter in the same way as the density function. To distin-
guish between these two cases, we select the bandwidth whilst we estimate
the density.

In Chapter 2 we introduced the oracle bandwidths HMISE,HAMISE which
depend on the unknown target density f . This dependence implies that they
cannot be computed using only a data sample drawn from f and so they
are not available for practical data analysis. The usual approach to auto-
matic, data-based bandwidth selection is based on first estimating either the
MISE or AMISE, which is then subsequently minimised to yield a bandwidth
Ĥ = argminH∈F

̂(A)MISE{ f̂ (·;H)} that is computed solely from the data.
Different bandwidth selectors arise from different estimators of the (A)MISE,
and especially of the integrated squared bias.

43
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In this chapter, Sections 3.1–3.3 introduce the normal scale, maximal
smoothing and normal mixture selectors, based on replacing the target den-
sity with a given parametric density in the error formulas. Sections 3.4–3.7
investigate the unbiased cross validation, biased cross validation, plug-in, and
smoothed cross validation selectors. Section 3.8 carries out an empirical com-
parison among all these selectors. Section 3.9 sets up a key mathematical
result to quantify the convergence rate of each data-based bandwidth. Sec-
tion 3.10 fills in the previously omitted mathematical details of the considered
bandwidth selectors.

3.1 Normal scale bandwidths

Normal scale bandwidths are often the first selectors to be developed for a
kernel estimator as they are the simplest in terms of mathematical and com-
putational complexity, as intuited by Silverman (1986, pp. 45–47). To obtain
a normal scale selector, the unknown target density f is replaced by a normal
density φΣΣΣ(·−µµµ) with mean µµµ and variance ΣΣΣ in the squared error formulas,
and the kernel K is taken to be the normal kernel.

Due to the neat mathematical properties of normal densities, in this case
the MISE and AMISE of f̂ become

MISENS{ f̂ (·;H)}= n−1|H|−1/2(4π)−d/2

+(2π)−d/2{(1−n−1)|2H+2ΣΣΣ|−1/2−2|H+2ΣΣΣ|−1/2 + |2ΣΣΣ|−1/2}
AMISENS{ f̂ (·;H)}= n−1|H|−1/2(4π)−d/2

+ 1
16(4π)−d/2|ΣΣΣ|−1/2{2tr(HΣΣΣ

−1HΣΣΣ
−1)+ tr2(HΣΣΣ

−1)}

as shown in Wand & Jones (1993) and Wand (1992), respectively.
There is no explicit formula for the minimiser of MISENS, not even in

the univariate case. However, Wand (1992) showed that the minimiser of
AMISENS within the class F of unconstrained bandwidths is given by

HNS = {4/(d +2)}2/(d+4)n−2/(d+4)
ΣΣΣ (3.1)

(see also Section 5.8 below for an alternative derivation of this result). If
we replace the population variance ΣΣΣ with an estimator, usually the sample
variance S, then we obtain a data-based, normal scale bandwidth

ĤNS = {4/(d +2)}2/(d+4)n−2/(d+4)S. (3.2)

This is also commonly referred to as a ‘rule of thumb’ selector. As the normal
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density is amongst the smoothest densities available, the normal scale selector
tends to yield bandwidths which lead to oversmoothing for non-normal data.

Even if the unconstrained optimal bandwidth has a relatively simple ex-
plicit formulation in the normal case, as given by Equation (3.1), when kernel
density estimation is used as an intermediate tool for other more involved
estimation problems it is not uncommon to use a constrained bandwidth
H = diag(h2

1, . . . ,h
2
d) ∈ D or H = h2Id ∈ A (see Azzalini & Torelli, 2007,

Chen et al., 2016, and also Chapters 6–7). In these cases, it is also useful to
have normal scale bandwidth selectors prior to developing more sophisticated
bandwidth selection methods.

Silverman (1986, p. 86–87) provided some heuristic advice, but it can be
verified that AMISENS{ f̂ (·;H)} is minimized for H = h2Id by taking

hNS =
[
4d|ΣΣΣ|1/2/{2tr(ΣΣΣ−2)+ tr2(ΣΣΣ−1)}

]1/(d+4)n−1/(d+4). (3.3)

Analogously, the i-th diagonal entry of the optimal diagonal bandwidth in the
normal case can be shown to be h2

NS,i, where

hNS,i =
[
4d|∆∆∆|1/2/{2tr(∆∆∆−2)+ tr2(∆∆∆−1)}

]1/(d+4)
σin−1/(d+4). (3.4)

Here, σ2
i denotes the i-th marginal variance, and ∆∆∆ = (diagΣΣΣ)−1ΣΣΣ with

diagΣΣΣ = diag(σ2
1 , . . . ,σ

2
d ) ∈Md×d (see Section 5.8). This generalizes the bi-

variate formula given in Scott (2015, Equation (6.42), p. 163) to an arbitrary
dimension. As in Equation (3.2), data-based constrained normal-scale band-
widths are obtained by replacing ΣΣΣ in Equations (3.3)–(3.4) with the sample
variance S.

It is worth noting that, despite the fact that optimal matrices obtained
from Equations (3.3) and (3.4) are constrained, their entries depend on the
unconstrained variance matrix ΣΣΣ, i.e., on the marginal variances as well as on
the covariances.

3.2 Maximal smoothing bandwidths

The maximal smoothing selector is similar in spirit to the normal
scale selector. As noted in Section 2.9.2, the size of the asymp-
totic oracle bandwidth HAMISE is inversely proportional to C( f ) =
minA∈F, |A|=1(vecT A)R(D⊗2 f )vecA. The maximal smoothing bandwidth is
the one that corresponds to the density f which minimises C( f ) amongst all
those densities with a given variability.

Terrell (1990) showed that, amongst those densities with identity covari-
ance matrix, the density that minimises C( f ) is the triweight density

f (xxx) = 1
6{(d +8)π}−d/2

Γ(d/2+4){1− xxx>xxx/(d +8)}3111{xxx>xxx≤ d +8}.
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The resulting maximal smoothing bandwidth, obtained by replacing the un-
known density in the AMISE formula with the triweight density, is

ĤMS =
{(d +8)(d+6)/2πd/2R(K)

16(d +2)Γ(d/2+4)

}2/(d+4)
n−2/(d+4)S. (3.5)

This bandwidth can be interpreted as the largest bandwidth that should be
used for any data whose sample variance is S. Thus it deliberately over-
smooths the data, even more so than the normal scale bandwidth. Equa-
tions (3.2) and (3.5) have the same form, with only different coefficients.

3.3 Normal mixture bandwidths

The normal scale selector can be extended to a more general case of a normal
mixture ∑

q
`=1 w`φΣΣΣ`

(·−µµµ`) where the `-th component has mean µµµ` and vari-
ance ΣΣΣ`, and the weights w` are non-negative and sum to 1. The corresponding
MISE and AMISE formulas are

MISENM{ f̂ (·;H)}= n−1|H|−1/2(4π)−d/2

+www>[(1−n−1)ΩΩΩ2−2ΩΩΩ1 +ΩΩΩ0]www

AMISENM{ f̂ (·;H)}= n−1|H|−1/2(4π)−d/2 + 1
4 www>ΞΞΞwww

where www = (w1, . . . ,wq), ΩΩΩa and ΞΞΞ are q× q matrices whose (`,`′) ele-
ments are [ΩΩΩa]`,`′ = φaH+ΣΣΣ`+ΣΣΣ`′

(µµµ`− µµµ`′) from Wand & Jones (1993, Theo-
rem 1), and [ΞΞΞ]`,`′ = φΣΣΣ`+ΣΣΣ`′

(µµµ`−µµµ`′)[2tr(HA`,`′HB`,`′)+ tr2(HC`,`′)], with
A`,`′ = (ΣΣΣ` + ΣΣΣ`′)

−1, B`,`′ = A`,`′ − 2A`,`′(µµµ` − µµµ`′)(µµµ` − µµµ`′)
>A`,`′ , and

C`,`′ = A`,`′−A`,`′(µµµ`−µµµ`′)(µµµ`−µµµ`′)
>A`,`′ from Wand (1992, Theorem 1).

These exact formulas are of a limited utility for non-normal mixture
data. So Cwik & Koronacki (1997) proposed to initially fit a normal mixture
∑

q̂
`=1 ŵ`φΣ̂ΣΣ`

(·− µ̂µµ`) to the data, where q̂, ŵ`, µ̂µµ`, Σ̂ΣΣ` are the estimated parame-
ters, and then to substitute them into the above AMISE formula to obtain

NM(H) = n−1(4π)−d/2|H|−1/2 + 1
4 ŵww>Ξ̂ΞΞŵww

where ŵww = (ŵ1, . . . , ŵq̂) and Ξ̂ΞΞ is a q̂× q̂ matrix equivalent of ΞΞΞ. Therefore
ĤNM = argminH∈F NM(H). The NM selector has a straightforward imple-
mentation in Algorithm 1.

3.4 Unbiased cross validation bandwidths

The previous selectors were highly dependent on a reference parametric dis-
tribution (i.e., normal, triweight or normal mixture). In keeping with the non-
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Algorithm 1 Normal mixture bandwidth selector for density estimation
Input: {XXX1, . . . ,XXXn}
Output: ĤNM

1: Fit an optimal normal mixture model with q̂ components
2: ĤNM := minimiser of NM(H)

parametric spirit of kernel estimators, we explore bandwidth selectors which
reduce this dependence on parametric reference distributions.

Unbiased cross validation (UCV), also known as least squares cross val-
idation (LSCV), is a leave-one-out cross validation method for selecting the
bandwidth, introduced by Rudemo (1982) and Bowman (1984). This method
admits motivations from the ISE and MISE points of view. To begin, note that
the ISE can be expanded as

ISE{ f̂ (·;H)}=
∫
Rd

f̂ (xxx;H)2 dxxx−2
∫
Rd

f̂ (xxx;H) f (xxx)dxxx+R( f ).

In this expansion, the first term is fully known since it only involves the kernel
estimator, the third term does not affect the choice of the minimiser, and the
integral in the second one can be expressed as the conditional expectation
E{ f̂ (XXX ;H)|XXX1, . . . ,XXXn} for a random variable XXX ∼ f which is independent of
XXX1, . . . ,XXXn. So if we denote the leave-one-out density estimator as

f̂−i(xxx;H) = (n−1)−1
n

∑
j=1, j 6=i

KH(xxx−XXX j),

then a sensible estimator of this conditional expectation is n−1
∑

n
i=1 f̂−i(XXX i;H).

This leads to the UCV criterion

UCV(H) =
∫
Rd

f̂ (xxx;H)2 dxxx−2n−1
n

∑
i=1

f̂−i(XXX i;H)

from which follows ĤUCV = argminH∈F UCV(H).
After expanding the first term, this criterion can also be expressed as

UCV(H) = n−1|H|−1/2R(K)

+{n(n−1)}−1
n

∑
i, j=1

j 6=i

{(1−n−1)KH ∗KH−2KH}(XXX i−XXX j).

(3.6)
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The expected value of the UCV criterion is

E{UCV(H)}= n−1|H|−1/2R(K)

+(1−n−1)R(KH ∗ f )−2
∫
Rd
(KH ∗ f )(xxx) f (xxx)dxxx

= MISE{ f̂ (·;H)}−R( f )

from Equation (2.4). The UCV is an unbiased estimator of the MISE, ignoring
the R( f ) constant which does not involve the bandwidth, giving the method
its name.

It is usual to make the identification 1−n−1 ≈ 1 inside the double sum in
Equation (3.6) since, although this yields the loss of exact unbiasedness, the
resulting bandwidth is asymptotically equivalent (Chacón & Duong, 2011,
Theorem 1) and its formulation is slightly simpler, leading to

UCV(H) = n−1|H|−1/2R(K)+{n(n−1)}−1
n

∑
i, j=1

j 6=i

(KH ∗KH−2KH)(XXX i−XXX j).

(3.7)

If the normal kernel K = φ is used, then the UCV criterion has an even
simpler form in Equation (3.8) due to the convolution properties of normal
densities, for example φΣΣΣ1 ∗φΣΣΣ2 = φΣΣΣ1+ΣΣΣ2 (Wand & Jones, 1993), which gives

UCV(H) = n−1|H|−1/2(4π)−d/2 +{n(n−1)}−1
n

∑
i, j=1

j 6=i

(φ2H−2φH)(XXX i−XXX j).

(3.8)

The UCV selector has a straightforward implementation in Algorithm 2,
which contains only one step for the numerical minimisation of the UCV
criterion.

Algorithm 2 UCV bandwidth selector for density estimation
Input: {XXX1, . . . ,XXXn}
Output: ĤUCV

1: ĤUCV := minimiser of UCV(H)

The existence of multiple local minima of the UCV curve for 1-
dimensional data is a well-documented phenomenon, as well as a tendency
for undersmoothing (Hall & Marron, 1991). These two issues are usually
addressed by restraining the numerical optimisation within a fixed range,
bounded away from very small bandwidths, and with an initial large band-
width (e.g., a normal scale or maximal smoothing).
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3.5 Biased cross validation bandwidths

A different flavour of cross validation arises if the error estimation step fo-
cuses on the AMISE rather than the MISE. Recall from Section 2.6 that

AMISE{ f̂ (·;H)}= n−1|H|−1/2R(K)+ 1
4 m2(K)2{vec>R(D⊗2 f )

}
(vecH)⊗2.

The biased cross validation criterion is based on replacing the unknown f in
such AMISE expression for the kernel density estimator f̂ , resulting in

BCV(H) = n−1|H|−1/2R(K)+ 1
4 m2(K)2{vec>R

(
D⊗2 f̂ (·;H)

)}
(vecH)⊗2

(3.9)

and ĤBCV = argminH∈F BCV(H). Scott & Terrell (1987) called it biased cross
validation (BCV) due to the fact that it targets the AMISE instead of the
MISE, but for this reason it is alternatively referred to as asymptotic cross
validation by Jones & Kappenman (1992).

The initial hope was that the biasedness would lead to a decrease in the
wide variability of the UCV, and thus an overall decrease in the MISE of
f̂ . Subsequent research has highlighted the importance of using a different,
pilot bandwidth to estimate the curvature matrix R(D⊗2 f ), despite the extra
computational burden, and so the BCV has not attracted sufficient interest
since its introduction.

Algorithm 3 for the BCV selector is straightforward.

Algorithm 3 BCV bandwidth selector for density estimation
Input: {XXX1, . . . ,XXXn}
Output: ĤBCV

1: ĤBCV := minimiser of BCV(H)

3.6 Plug-in bandwidths

Plug-in bandwidth selectors were first introduced for multivariate data for
constrained matrices by Wand & Jones (1994), who extended the univari-
ate methodology of Sheather & Jones (1991). The current approach for un-
constrained bandwidth matrices was first introduced by Duong & Hazelton
(2003) and later refined by Chacón & Duong (2010).

For the plug-in class of bandwidth selectors, we begin with an alternative
form of the AMISE to those previously exhibited in Equation (2.10), namely

AMISE{ f̂ (·;H)}= n−1|H|−1/2R(K)+ 1
4 m2(K)2

ψψψ
>
4 (vecH)⊗2. (3.10)



50 BANDWIDTH SELECTION

The vector ψψψ4 = vecR(D⊗2 f ) ∈ Rd4
corresponds to the case s = 2 of the

more general functional ψψψ2s ∈ Rd2s
, defined as

ψψψ2s = (−1)s vecR(D⊗s f ) =
∫
Rd

D⊗2s f (xxx) f (xxx)dxxx,

where the last equality follows by element-wise integration by parts, subject
to some regularity conditions.

As ψψψ2s = E{D⊗2s f (XXX)} for XXX ∼ f , a natural estimator is

ψ̂ψψ2s ≡ ψ̂ψψ2s(G) = n−1
n

∑
i=1

D⊗2s f̃ (XXX i;G) = n−2
n

∑
i, j=1

D⊗2sLG(XXX i−XXX j), (3.11)

where f̃ is a kernel density estimator based on a pilot kernel L and a pilot
bandwidth G, which may be potentially different from the K and H used in
f̂ . The special case of s = 2 yields the plug-in estimator of the AMISE,

PI(H;G) = n−1|H|−1/2R(K)+ 1
4 m2(K)2

ψ̂ψψ4(G)>(vecH)⊗2, (3.12)

and the bandwidth selector ĤPI = argminH∈F PI(H;G). Note that ĤPI depends
on the choice of the pilot bandwidth G.

From Equation (3.12), it appears that we have not made any progress to-
wards the goal of selecting H as we have introduced the problem of selecting
the pilot bandwidth G. Whilst it is crucial to the performance of the density
estimator f̂ that H is selected carefully, the selection of the pilot bandwidth
G should affect the final estimate less markedly as it has a lesser, secondary
effect on f̂ via the calculation of ψ̂ψψ4(G), see Sheather & Jones (1991).

In any case, the analogous optimality criterion for selecting G is

MSE(ĤPI) = E
{
‖vec(ĤPI−HAMISE)‖2}

and it can be shown that

MSE(ĤPI) = const ·E
{
‖ψ̂ψψ4(G)−ψψψ4‖2}{1+o(1)} (3.13)

where the constant does not involve G or the data (Duong & Hazelton, 2005a,
Lemma 1), so that it can be ignored when optimising the MSE(ĤPI) with
respect to G. The performance of ĤPI is directly related to the mean squared
error MSE{ψ̂ψψ4(G)}= E

{
‖ψ̂ψψ4(G)−ψψψ4‖2

}
.

The leading asymptotic term of this MSE is

AMSE{ψ̂ψψ4(G)}= ‖n−1|G|−1/2(G−1/2)⊗4D⊗4L(000)

+ 1
2 m2(L)(vec>G⊗ Id4)ψψψ6‖2 (3.14)
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as developed by Chacón & Duong (2010, Theorem 1). The asymptotically op-
timal G is the minimiser of this AMSE in Equation (3.14). As it contains the
unknown quantity ψψψ6, in practice it is necessary to replace ψψψ6 with another
kernel estimator ψ̂ψψ6, whose bandwidth is chosen as a normal scale pilot band-
width ĜNS,6 = {2/(d +6)}2/(d+8)2Sn−2/(d+8), which is obtained as the min-
imiser of AMSE{ψ̂ψψ6(G)} in the normal case, see Chacón & Duong (2010,
Equation (8)). This is known as a 2-stage selector as the number of stages
enumerates the number of kernel functional estimation, in this case ψ̂ψψ4, ψ̂ψψ6.
Two stages of kernel functional estimation has been theoretically and empir-
ically recommended by Aldershof (1991); Park & Marron (1992); Wand &
Jones (1995); Tenreiro (2003).

A normal scale selector ĜNS,6 for the sixth order integrated functional
leads to a minor loss of efficiency in the presence of departures from non-
normality as compared to a normal scale selector ĤNS for the density estimate
f̂ . This insensitivity of the pilot bandwidth to an imprecise estimation can be
extended to afford a further reduction in complexity without overly compro-
mising the accuracy of f̂ by using the scalar bandwidth class G ∈A, as there
is an analytic expression for the minimiser of AMSE{ψ̂ψψ4(g

2Id)}, namely

ĝ4 = [2A1/{−A2 +(A2
2 +4A1A3)

1/2}]1/(d+6)n−1/(d+6) (3.15)

where the constants are A1 = (2d + 8)D⊗4L(000)>D⊗4L(000),A2 = (d +
2)m2(L)D⊗4L(000)>(vecId⊗Id)ψ̂ψψ6(ĝ

2
NS,6Id), and A3 =m2(L)2ψ̂ψψ6(ĝ

2
NS,6Id)

>×
(vecId vec> Id4⊗ Id)ψ̂ψψ6(ĝ

2
NS,6Id). The normal scale scalar pilot is

ĝNS,6 = [2B1/{−B2 +(B2
2 +4B1B3)

1/2}]1/(d+8)n−1/(d+8)

where B1 = 30(2π)−dd(d + 2)(d + 4)(d + 6),B2 = −15
16 2−d/2(2π)−d(d +

4)|S|−1/2ν4(S−1), and B3 = ψ̂ψψ
>
NS,8(vecId vec> Id⊗ Id6)ψ̂ψψNS,8. For the defini-

tion of ν4(S−1) see Section 5.1.3, and ψ̂ψψNS,8 see Section 5.8.2. Whilst scalar
bandwidths usually result in simple explicit expressions, in this case it is the
unconstrained pilot bandwidth ĜNS,6 which exhibits a more concise form than
ĝNS,6. A pilot bandwidth of class A is sufficient for most cases if the data are
pre-scaled to have the same marginal variance, though for cases where uncon-
strained pilots of class F are more appropriate, see Chacón & Duong (2010).

The 2-stage plug-in selector is given in Algorithm 4, with the option in
steps 1 and 3 to use an unconstrained or scalar pilot, as provided by Duong &
Hazelton (2003). The result is ĤPI which is a generalisation of the diagonal
bandwidths from Wand & Jones (1994).
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Algorithm 4 Two-stage plug-in bandwidth selector for density estimation
Input: {XXX1, . . . ,XXXn}
Output: ĤPI

1: Compute 6th order normal scale pilot bandwidth
(a) Unconstrained pilot Ĝ6 := ĜNS,6
(b) Scalar pilot Ĝ6 := ĝ2

NS,6Id

2: Compute 6th order kernel functional estimate ψ̂ψψ6(Ĝ6) /* Stage 1 */
3: Plug ψ̂ψψ6(Ĝ6) into formula for pilot bandwidth Ĝ4

(a) Unconstrained pilot Ĝ4 := minimiser of ÂMSE{ψ̂ψψ4(G)}
(b) Scalar pilot Ĝ4 := ĝ2

4Id
4: Compute 4th order kernel functional estimate ψ̂ψψ4(Ĝ4) /* Stage 2 */
5: ĤPI := minimiser of PI(H;Ĝ4)

3.7 Smoothed cross validation bandwidths

A third main flavour of cross validation, known as smoothed cross validation
(SCV), has shown more promise than biased cross validation in the goal to
reduce the large variability of unbiased cross validation. This is achieved by
an improved estimator of the integrated squared bias, posited by Hall et al.
(1992). Instead of estimating the asymptotic ISB, the SCV criterion aims to
estimate the exact ISB by replacing the true density f by a pilot kernel density
estimator f̃ (xxx;G) = n−1

∑
n
i=1 LG(xxx−XXX i) to obtain

ÎSB(H;G) =
∫
Rd
[{KH ∗ f̃ (·;G)}(xxx)− f̃ (xxx;G)]2 dxxx

= n−2
n

∑
i, j=1

(K̄H ∗ L̄G−2KH ∗ L̄G + L̄G)(XXX i−XXX j)

where K̄ = K ∗K and L̄ = L∗L. Adding the dominant term of the IV yields

SCV(H;G) = n−1|H|−1/2R(K)

+n−2
n

∑
i, j=1

(K̄H ∗ L̄G−2KH ∗ L̄G + L̄G)(XXX i−XXX j) (3.16)

as the SCV estimator of the (A)MISE. The SCV selector is then ĤSCV =
argminH∈F SCV(H;G). In contrast to the - estimator of the AMISE in Equa-
tion (3.12), no estimator of the integrated density functional ψψψ4 is required
in Equation (3.16), with the trade-off of the more computationally intensive
double sums.

If there are no duplicates in the data XXX1, . . . ,XXXn and if we consider L000
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as a Dirac delta function, then the unbiased cross validation is a special case
of the smoothed cross validation as SCV(H;000) ≡ UCV(H), as observed by
Hall et al. (1992). So SCV differs from the UCV by pre-smoothing the data
differences XXX i−XXX j by L̄G.

If, instead of using the dominant term of the IV, the exact IV is employed,
the resulting estimate of the MISE is

BMISE(H;G) = n−1|H|−1/2R(K)

+n−2
n

∑
i, j=1
{(1−n−1)K̄H ∗ L̄G−2KH ∗ L̄G + L̄G}(XXX i−XXX j).

(3.17)

The only difference with Equation (3.16) is the 1−n−1 factor in the first term
of the double sum, hence the difference between the two criteria is asymptoti-
cally negligible. Equation (3.17) shows that there is little effect on bandwidth
selection in substituting n−1|H|−1/2R(K) for the exact variance, at least in an
asymptotic sense, and this can be extended from the SCV to any bandwidth
selector, as shown in Chacón & Duong (2011, Theorem 1). This echoes the
asymptotically negligible difference between the exact and asymptotic vari-
ance in the MISE and AMISE, respectively, in Equations (2.4) and (2.10).

In this form, it can be shown that BMISE is the smoothed bootstrap es-
timate of the MISE, obtained by replacing the target f by a pilot estimator
f̃ (·;G) everywhere in the MISE formula, including in the expectation opera-
tor which is taken with respect to f̃ (·;G) instead of f . This bootstrap approach
to bandwidth selection was introduced in the univariate case by Taylor (1989)
with G = H, and more recently Horová et al. (2013) developed a closely re-
lated multivariate analogue. Faraway & Jhun (1990) noticed the advantages
of using a different pilot bandwidth G, and its theoretical properties were
studied in Marron (1992) and Cao (1993). Due to its equivalence to the SCV
criterion, only the latter will be treated here in detail.

Similar to the UCV, if normal kernels K = L = φ are used, then the SCV
has a simpler form in Equation (3.18):

SCV(H;G) = n−1|H|−1/2(4π)−d/2

+n−2
n

∑
i, j=1

(φ2H+2G−2φH+2G +φ2G)(XXX i−XXX j). (3.18)

The analogous pilot bandwidth selection problem for the SCV is
slightly different from the PI selector. The MSE has the same form
MSE(ĤSCV) = E

{
‖vec(ĤSCV −HMISE)‖2

}
which has leading asymptotic
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term AMSE(ĤSCV) = const ·AMSE∗{ψ̂ψψ4(G)} where the constant does not
involve G, see Chacón & Duong (2011, Theorem 2), and

AMSE∗{ψ̂ψψ4(G)}= ‖n−1|G|−1/2(G−1/2)⊗4D⊗4L̄(000)

+ 1
2 m2(L̄)(vec>G⊗ Id4)ψψψ6‖2 (3.19)

which is the AMSE{ψ̂ψψ4(G)} in Equation (3.14) except that the convolved
kernel L̄ rather than L is used. Whilst ψ̂ψψ4 itself is not needed to evaluate the
SCV criterion, we are still required to compute the corresponding Ĝ4. For a 2-
stage SCV selector, we are also required to compute Ĝ6 and ψ̂ψψ6, with the for-
mer selected as the minimiser of an analogous AMSE∗{ψ̂ψψ6(G)}. To begin the
procedure, the normal scale pilot is Ĝ∗NS,6 = {2/(d +6)}2/(d+8)Sn−2/(d+8).

If scalar pilot selectors are preferred, then the scalar minimiser of
ÂMSE∗{ψ̂ψψ2s(g

2Id)} is

ĝ∗4 = [2A1/{−A2 +(A2
2 +4A1A3)

1/2}]1/(d+6)n−1/(d+6) (3.20)

where the constants are A1 = (2d + 8)D⊗4L̄(000)>D⊗4L̄(000),A2 = (d +
2)m2(L̄)[vecId ⊗D⊗4L̄(000)]>ψ̂ψψ6(ĝ

∗2
NS,6Id), and A3 = m2(L̄)2ψ̂ψψ6(ĝ

∗2
NS,6Id)

> ×
(vecId vec> Id⊗ Id4)ψ̂ψψ6(ĝ

∗2
NS,6Id). The normal scale scalar pilot is

ĝ∗NS,6 = [2B1/{−B2 +(B2
2 +4B1B3)

1/2}]1/(d+8)n−1/(d+8)

where B1 = 15
32(4π)−dd(d + 2)(d + 4)(d + 6),B2 = −15

64(4π)−d(d + 4)×
|S|−1/2ν4(S−1) and B3 = 4ψ̂ψψ

>
NS,8(vecId vec> Id⊗ Id6)ψ̂ψψNS,8.

The 2-stage SCV selector is given in Algorithm 5, with the option in Steps
3–4, provided by Chacón & Duong (2011), to use an unconstrained or a scalar
pilot. The result is ĤSCV, which is a generalisation of the univariate selector
of Hall et al. (1992).

Whilst we do not have in general explicit expressions for the uncon-
strained data-based selectors, or even the oracle (A)MISE selectors, we are
able to establish that all these selectors are of order n−2/(d+4). Analogously
we can show that optimal pilot selector Ĝ4 for both the plug-in and SCV is of
order n−2/(d+6).

3.8 Empirical comparison of bandwidth selectors

To explore the performance of all the previously exposed bandwidth selec-
tion methods in practice we focus on one target density, the Trimodal III
normal mixture density introduced in Wand & Jones (1993) as density (K),
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Algorithm 5 Two-stage SCV bandwidth selector for density estimation
Input: {XXX1, . . . ,XXXn}
Output: ĤSCV

1: Compute 6th order normal scale pilot bandwidth
(a) Unconstrained pilot Ĝ6 := Ĝ∗NS,6

(b) Scalar pilot Ĝ6 := ĝ∗2NS,6Id

2: Compute 6th order kernel functional estimate ψ̂ψψ6(Ĝ6) /* Stage 1 */
3: Plug ψ̂ψψ6(Ĝ6) into formula for pilot bandwidth Ĝ4

(a) Unconstrained pilot Ĝ4 := minimiser of ÂMSE∗{ψ̂ψψ4(G)}
(b) Scalar pilot Ĝ4 := ĝ∗24 Id

4: HSCV := minimiser of SCV(H;Ĝ4) /* Stage 2 */

and also included in Chacón (2009) as density #9. This density can be re-
garded as representative of a medium level of estimation difficulty, since
it consists of three well-separated modal regions, albeit with different sizes
and covariance structures. Its distribution is 3

7 N
(
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10 ; 63

10 ,
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4 ]
)
+

3
7 N
(
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√
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4 ]
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7 N
(
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√
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4 ]
)

and its quar-
tile contour plots are displayed in Figure 3.1. While it is inadvisable to draw
general conclusions from the study of the performance of the selectors for
this particular density, our broader experience suggests that the main patterns
obtained for this moderately difficult example are closely followed in many
other similar situations.

Figure 3.1 Contour plot of a moderately difficult-to-estimate normal mixture density,
the Trimodal III density, having three modal regions with different sizes and covari-
ance structures.

We drew N = 500 samples of size n = 1000 from this target density.
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For each sample, the normal scale, normal mixture, UCV, BCV, PI and SCV
bandwidth selectors were computed, and the ISEs of the kernel density esti-
mator using such bandwidths were obtained. The advantage of normal mix-
ture densities is that, in addition to being easy to simulate from to produce
a wide variety of density shapes, the ISE has a closed form. When the tar-
get normal mixture density is f = ∑

q
`=1 w`φΣΣΣ`

(· − µµµ`) and the kernel is the
standard normal density, Duong (2004) showed that the ISE can be written
as ISE{ f̂ (·;H)} = n−2

∑
n
i,i′=1 φ2H(XXX i−XXX i′)− 2n−1

∑
n
i=1 ∑

q
`=1 w`φH+ΣΣΣ`

(XXX i−
µµµ`)+∑

q
`,`′=1 w`φΣΣΣ`+ΣΣΣ`′

(µµµ`−µµµ`′).
To obtain an impression of the typical performance of each bandwidth se-

lection method we recorded the sample number (out of the N = 500 samples
considered) that produced the median ISE for each of the bandwidth selec-
tors considered, and computed the corresponding density estimate using that
sample and bandwidth selector, as shown in Figure 3.2.

From these median-performance displays it can be concluded that most
of the bandwidth selectors considered have a reasonably good median perfor-
mance. Here, the normal mixture bandwidth ĤNM should be close to asymp-
totic oracle bandwidth, since the target density is indeed a normal mixture
density. In Figure 3.2(b) it can be seen that the median performance of this
bandwidth is able to recover the trimodal structure, although perhaps with
too irregular contours. The other selector that typically discovers the trimodal
structure, with slightly smoother contours, is the plug-in bandwidth ĤPI in
Figure 3.2(e). The median performance estimate of the unbiased cross valida-
tion bandwidth ĤUCV in Figure 3.2(c) also shows the lower rightmost modal
region, though there is an indication of undersmoothing in the upper modal re-
gion. Whilst the smoothed cross validation selector ĤSCV does not reveal the
trimodal structure as clearly as the normal mixture, UCV, and PI selectors,
the orientation of the two larger modal regions are the closest to those of the
target density in Figure 3.1. On the other hand, the normal scale bandwidth
ĤNS in Figure 3.2(a) leads to oversmoothed contours as it does not reveal the
lower mode. Even smoother contours are shown in the median performance
estimate of the biased cross validation bandwidth ĤBCV in Figure 3.2(d).

To gain a deeper insight into the behaviour of these bandwidth selectors it
is useful to explore further graphical features of the scaled kernels employed
to construct the estimates. The individual scaled bivariate normal kernels,
which comprise the density estimate, exhibit elliptical contours whose size
and orientation are determined by the bandwidth matrix H. The entries of H
have a clear statistical meaning: the two diagonal entries provide the variance
of each of the two coordinates in this scaled distribution and the off-diagonal
entry the covariance between them.
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(a) NS (b) NM

(c) UCV (d) BCV

(e) PI (f) SCV

Figure 3.2 Different bandwidth selectors for the density estimates for the n = 1000
data from the Trimodal III normal mixture density. (a) Normal scale ĤNS. (b) Nor-
mal mixture ĤNM. (c) Unbiased cross validation ĤUCV. (d) Biased cross validation
ĤBCV. (e) Plug-in ĤPI. (f) Smoothed cross validation ĤSCV.
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From a graphical point of view, it is perhaps more instructive to utilise the
size-rotation parametrisation from Section 2.9.2, i.e., let H= λA with |A|= 1
so that λ = |H|1/d can be regarded as the size of H. The ellipse that forms
the contours of the individual scaled kernels is unambiguously determined
if, in addition to this size, we are given the axes ratio and the rotation angle
of the ellipse defined by A. The axes ratio refers to the ratio of the major
and minor diameters of the ellipse, and the rotation angle refers to the angle
subtended of the major axis from the horizontal axis. Both of the quantities
are by-products of the eigen-decomposition of H. For example, the MISE-
optimal bandwidth for this normal mixture density and sample size n = 1000
is numerically computed to be HMISE = [0.053,0.027;0.027,0.072]. Its size
is |HMISE|1/2 = 0.056 and, for the associated ellipse, the axes ratio is 2.666
and the rotation angle is 55.12 degrees.

Figure 3.3 provides a visual impression of the performance of the band-
width selectors with respect to the oracle bandwidth HMISE.. The thick black
ellipse represents the 50% contour curve of the kernel function scaled with the
oracle bandwidth HMISE, i.e., the scaling for an optimal estimate of the target
density. The purple curves represent the analogous ellipses for the different
scalings induced by the different bandwidth selectors for each of the 500 sim-
ulated samples. The easiest feature to compare in Figure 3.3 is the bandwidth
size. The fact that ĤNS and ĤBCV both oversmooth is clearly shown, as their
ellipses present little variability but their sizes are certainly larger than the size
of the optimal ellipse. A slight tendency for under-rotation is also observed for
ĤNS, and ĤBCV tends to produce nearly circular ellipses which are markedly
less elongated than the optimal ellipse. The average size of ĤUCV seems to
follow that of the oracle, by sometimes undersmoothing while other times
oversmoothing. Its wide variability is revealed in Figure 3.3(c), which not
only affects the bandwidth size but also can yield completely wrong ellipse
orientations in some cases. These characteristics make ĤUCV insufficiently
reliable in practice. In contrast, the ellipses of ĤNM appear markedly less
variable. This bandwidth selector shows a tendency to undersmooth, proba-
bly because the size of its target, the asymptotic oracle HAMISE, is smaller
than the size of the non-asymptotic counterpart HMISE (the univariate case,
Marron & Wand (1992) conjectured that this relationship is true for all den-
sities). The ellipses of both ĤPI and ĤSCV are tightly concentrated around the
ellipse of the oracle bandwidth, with only a slight bias towards oversmooth-
ing. The performance of these two selectors is similar to that of ĤNM, even if
the former were not constructed on the basis of a normal mixture assumption.
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(a) NS (b) NM

(c) UCV (d) BCV

(e) PI (f) SCV

Figure 3.3 Visual performance of the different bandwidth selectors from the N = 500
samples of size n = 1000 from the Trimodal III normal mixture density. The target
50% contour ellipse for HMISE is the solid black curve, the 50% contour ellipses
for the bandwidth selectors are the purple curves. (a) Normal scale ĤNS. (b) Nor-
mal mixture ĤNM. (c) Unbiased cross validation ĤUCV. (d) Biased cross validation
ĤBCV. (e) Plug-in ĤPI. (f) Smoothed cross validation ĤSCV.
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3.9 Theoretical comparison of bandwidth selectors

The different selectors Ĥ exhibited in the previous sections are all the same
asymptotic order n−2/(d+4), because it can be shown that they are all consis-
tent for HAMISE, in the sense that H−1

AMISEĤ converges in probability to the
identity matrix. However, it would be incorrect then to infer that their relative
rate of convergence to the oracle bandwidth HAMISE is also of the same or-
der. The different convergence rates reflect the differences in their estimation
performance.

A common measure used to quantify the theoretical asymptotic perfor-
mance between the different selectors is the relative rate of convergence . We
say that a bandwidth selector Ĥ converges to the oracle bandwidth HAMISE at
relative rate n−α , for α > 0, when

vec(Ĥ−HAMISE) = OP(Jd2n−α)vecHAMISE (3.21)

where Jd2 is the d2×d2 matrix of all ones, as posited by Duong & Hazelton
(2005a). The Jd2 matrix is used here instead of the identity Id2 to cover the
cases whenever HAMISE contains zero off-diagonal elements, e.g., when the
target density is unimodal with a diagonal variance matrix, but as the data-
based selector Ĥ belongs to the unconstrained class F, the Jd2 ensures that
Equation (3.21) remains well-defined by utilising the overall rate of HAMISE
as the relative rate of convergence to a zero element is undefined.

Observe that the squared norm of the left-hand side of Equation (3.21),
i.e., ‖vec(Ĥ−HAMISE)‖2, is indeed the MSE(Ĥ) in Equation (3.13). This
close relationship is the basis for the computation of these relative conver-
gence rates.

The rates for all the unconstrained selectors are summarised in Table 3.1,
extending Jones (1992, Table 3) for the selectors in class A. The performance
decreases with increasing dimension. The rates for the BCV and PI are es-
tablished by Duong & Hazelton (2005a) and Chacón & Duong (2010), and
the rates for UCV and SCV by Duong & Hazelton (2005b) and Chacón &
Duong (2011). For d = 1 for the PI and SCV selectors, bias annihilation is
possible yielding a rate of n−5/14 (Sheather & Jones, 1991; Jones et al., 1991)
whereas for d > 1 only bias minimisation is possible so the rate is n−2/(d+6).
For d = 2,3 the BCV and UCV selectors rate of n−min{d,4}/(2d+8) is slower
than the SCV and PI selectors rate, but this swaps over for d ≥ 4.

The convergence rates remain the same for constrained matrices
for the cross validation selectors (UCV, BCV, SCV), though the con-
strained plug-in selectors ĤPI,D or ĤPI,A have a faster rate of convergence
n−min{8,d+4}/(2d+12), again due to bias annihilation, indicating that selecting
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the off-diagonal elements of the bandwidth matrix, which determine the ori-
entation of the kernel, is the most difficult aspect of unconstrained plug-in
selection (Wand & Jones, 1994).

Selector Class Convergence rate to HAMISE

ĤUCV A,D,F n−min{d,4}/(2d+8)

ĤBCV A,D,F n−min{d,4}/(2d+8)

ĤSCV d = 1 n−5/14

ĤSCV d > 1,A,D,F n−2/(d+6)

ĤPI d = 1 or d > 1,A,D n−min{8,d+4}/(2d+12)

ĤPI d > 1,F n−2/(d+6)

Table 3.1 Convergence rates to HAMISE for the unbiased cross validation ĤUCV,
biased cross validation ĤBCV, smoothed cross validation ĤSCV and plug-in ĤPI se-
lectors.

Similar to Equation (3.21), we can establish that vec(HAMISE−HMISE) =
O(Jd2n−2/(d+4))vecHMISE, i.e., the convergence rate of HAMISE to HMISE is
O(n−2/(d+4)), which is faster than all the rates in Table 3.1, implying that the
rates of convergence of Ĥ to HMISE remain the same.

3.10 Further mathematical analysis of bandwidth selectors

We provide more details about the behaviour of kernel estimators: whilst they
are not required for practical data analysis, they contribute to a deeper under-
standing and appreciation of their important properties. It is these properties
which underlie their widespread use in practise. The literature for kernel den-
sity estimators is vast, and it is not possible to cover all the mathematical
results which have been developed since their introduction, so we provide an
outline of the most prominent ones.

3.10.1 Relative convergence rates of bandwidth selectors

The n−α order in probability in the relative convergence rate of a bandwidth
selector Ĥ, i.e., vec(Ĥ−HAMISE) = OP(Jd2n−α)vecHAMISE from Equa-
tion (3.21), is difficult to establish directly. Fortunately, if we include some
stronger regularity conditions so that

MSE(Ĥ) = E{‖vec(Ĥ−HAMISE)‖2}

exists, then Duong & Hazelton (2005a) demonstrate that this MSE has
a tractable asymptotic form in terms of the derivative of the difference
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ÂMISE−AMISE, which we reproduce as Theorem 2. This theorem eluci-
dates that the convergence rate of a data-based selector depends on the quality
of its corresponding estimator of the (A)MISE.

For brevity, denote AMISE(H) ≡ AMISE{ f̂ (·;H)} and α̂αα(H) =

DH(ÂMISE−AMISE)(H), with DH standing for the gradient operator with
respect to vecH. Similarly, denote by HH the Hessian operator with respect
to vecH.

Theorem 2 Suppose that (A1)–(A3) in Conditions A hold and that Ĥ is con-
sistent for HAMISE. Then the mean squared error of a bandwidth selector can
be expanded as MSE(Ĥ) = AMSE(Ĥ){1+o(1)} where

AMSE(Ĥ) = tr
[
{HHAMISE(HAMISE)}−2(Var{α̂αα(HAMISE)}

+{E α̂αα(HAMISE)}{E α̂αα
>(HAMISE)}

)]
and HHAMISE(HAMISE) is a constant symmetric positive definite matrix
which does not depend on the data. Thus if MSE(Ĥ)=O(n−2α)‖vecH2

AMISE‖,
then the relative rate of convergence of Ĥ to HAMISE is OP(n−α).

Proof (Proof of Theorem 2) We expand DHÂMISE as follows:

DHÂMISE(Ĥ) = DH(ÂMISE−AMISE)(Ĥ)+DHAMISE(Ĥ)

= DH(ÂMISE−AMISE)(Ĥ)+
{
DHAMISE(HAMISE)

+HHAMISE(HAMISE)vec(Ĥ−HAMISE)
}
{1+op(1)}.

Now we have DHÂMISE(Ĥ) = DHAMISE(HAMISE) = 000 so that

vec(Ĥ−HAMISE)

=−{HHAMISE(HAMISE)}−1DH(ÂMISE−AMISE)(Ĥ){1+op(1)}

=−{HHAMISE(HAMISE)}−1DH(ÂMISE−AMISE)(HAMISE)

×{1+op(1)},

the last equality due to the fact that Ĥ is consistent for HAMISE. Taking expec-
tations and variances respectively completes the result. This is essentially a
modified version of the proof of Duong & Hazelton (2005a, Lemma 1) which
has been updated to the current notation.

To compute the derivatives of AMISE(H), the required differen-
tials are d|H|−1/2 and d{(vec>H)R(D⊗2 f )vecH}. We have d|H|−1/2 =
−1

2 |H|
−1/2 vec>H−1d vecH, as d|H|−1/2 = −|H|−1(d|H|1/2) and d|H|1/2 =

1
2 |H|

−1d|H| = 1
2 |H|

1/2(vec>H−1)d vecH, as d|H| = |H|(vec>H−1)d vecH,
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from Magnus & Neudecker (1999, Chapter 9.10, p. 178). We also have
d{(vec>H)R(D⊗2 f )vecH} = 2(vec>H)R(D⊗2 f )d vecH from Magnus &
Neudecker (1999, Chapter 9.8), since R(D⊗2 f ) is symmetric.

So the first derivative of AMISE(H) with respect to vecH is thus

DHAMISE(H) =−1
2 n−1R(K)|H|−1/2 vecH−1 + 1

2 m2(K)2R(D⊗2 f )vecH.

Moreover, since d(vecH−1) = −(H−1 ⊗ H−1)d vecH from Magnus &
Neudecker (1999, Chapter 9.13, p. 183), the Hessian matrix is

HHAMISE(H) = 1
2 n−1R(K)|H|−1/2(vecH−1 vec>H−1 +H−1⊗H−1)

+ 1
2 m2(K)2R(D⊗2 f ).

For any H = O(n−2/(d+4)), this implies that HHAMISE(H) is a constant ma-
trix, i.e., does not depend on n or the data. Applying the result for the inverse
of the sum of a non-singular matrix and the outer product of the two vectors
(Bartlett, 1951) ensures that HHAMISE(H) is non-singular. �

With the general statement in Theorem 2, we can compute the rates con-
tained in Table 3.1. We illustrate it with the special case plug-in selector in
Theorem 3, which was first developed by Chacón & Duong (2010, Theo-
rem 1).

Theorem 3 Suppose that (A1)–A(3) in Conditions A hold. Then the
AMSE(ĤPI) = O(n−4/(d+6))‖vecH2

AMISE‖, and the relative rate of conver-
gence of ĤPI to HAMISE is n−2/(d+6) .

Proof (Proof of Theorem 3) Recall that PI(H;G) = n−1|H|−1/2R(K) +
1
4 m2(K)2ψ̂ψψ4(G)>(vecH)⊗2 so the key quantity of the discrepancy ααα(H) =
DH(PI−AMISE)(H) is obtained as

α̂αα(H) = 1
2 m2(K)2{(vec>H)⊗ Id2

}
{ψ̂ψψ4(G)−ψψψ4}

since R(D⊗2 f )vecH = vec{Id2R(D⊗2 f )vecH} =
{
(vec>H) ⊗ Id2

}
ψψψ4.

It follows that E{α̂αα(H)} = 1
2 m2(K)2

{
(vec>H) ⊗ Id2

}
[E{ψ̂ψψ4(G)} − ψψψ4]

and Var{α̂αα(H)}= 1
4 m2(K)4

{
(vec>H)⊗ Id2

}
Var{ψ̂ψψ4(G)}

(
vecH⊗ Id2

)
. As

HHAMISE(HAMISE)=O(Jd2) from Theorem 2, then AMSE(ĤPI) is the same
order as the squared bias and variance of ψ̂ψψ4(G), multiplied by ‖vecH2

AMISE‖.
Their leading terms are given in Chacón & Duong (2010, Theorem 1) as

Bias{ψ̂ψψ4(G)}=
{

n−1|G|−1/2(G−1/2)⊗4D⊗4L(000)

+ 1
2 m2(L)(vec>G⊗ Id4)ψψψ6

}
{1+o(1)}

Var{ψ̂ψψ4(G)}=
{

4n−1 Var{D⊗4 f (XXX)}
+2n−2

ψ0(G−1/2)⊗4R(D⊗4L)(G−1/2)⊗4}{1+o(1)}.
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Theorem 2 in this same paper asserts that the pilot bandwidth which min-
imises the MSE{ψ̂ψψ4(G)} is order n−2/(d+6). Using this bandwidth order, then
AMISE(ĤPI) = O(n−4/(d+6))‖vecH2

AMISE‖. �

For smoothed cross validation, the calculations are similar to the plug-in
case but are more complicated as a higher order approximation of the AMISE
is required in (SCV−AMISE)(H). The resulting MSE(ĤSCV) is the same or-
der as AMSE∗{ψ̂ψψ4(G)} which is the same as AMSE{ψ̂ψψ4(G)} except that the
convolved kernel L̄ replaces the kernel L, see Chacón & Duong (2011). With
these similarities between the plug-in and SCV analysis, it is not surprising
that the relative convergence rate of ĤSCV is the same as for ĤPI.

For unbiased cross validation, whilst (UCV−MISE)(H) involves a dou-
ble sum, there is no pilot bandwidth to consider. The convergence rate of
ĤUCV is established in Duong & Hazelton (2005b, Theorem 1), and updated
to our current notation by Chacón & Duong (2013, Theorem 1).

For biased cross validation, for the required discrepancy (BCV −
AMISE)(H) = 1

4 m2(K)2(ψ̂ψψ4(H)− ψψψ4)
>(vecH)⊗2, it is more involved to

compute the derivative with respect to vecH than for the PI selector, since
for the latter the term ψ̂ψψ4(G) does not depend on H. The convergence rate of
ĤBCV is obtained in Duong & Hazelton (2005a, Theorem 2). Observe that the
UCV and BCV selectors have the same convergence rate as they both do not
use pilot selectors.

3.10.2 Optimal pilot bandwidth selectors

An equivalent definition of the relative convergence rate of a data-based pilot
bandwidth Ĝ to GAMSE follows directly from Equation (3.21). Results treat-
ing the unconstrained case have not been established, though e.g., Duong
(2004, Lemmas 6 and 14) establish that this relative rate is Op(n−2/d+8))
for the scalar class A, respectively, for the plug-in (Equation 3.15) and SCV
(Equation 3.20) pilot selectors. It is conjectured that this rate will remain un-
changed for the unconstrained class F.

Separate pilot bandwidths for each of the elements of R(D⊗2 f ) is es-
poused in Wand & Jones (1994), i.e., considering different pilot band-
widths argming>0 AMSE{ψ̂r1,...,rd (g)} for each combination of r1, . . . ,rd =
0, . . . ,4,r1 + . . .rd = 4, which are the multi-indices that enumerate all the
fourth order partial derivatives comprising R(D⊗2 f ). If R̂(D⊗2 f ) is ob-
tained by the element-wise replacement of the ψr1,...,rd by ψ̂r1,...,rd (g), then
an alternative form of the plug-in criterion in Equation (3.12) is PI∗(H) =
n−1|H|−1/2R(K)+ 1

4 m2(K)2(vec>H)R̂(D⊗2 f )vecH. With a diagonal band-
width matrix H ∈ D, then argminH∈D PI∗(H) is well-defined. However this
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is not the case for H ∈ F as R̂(D⊗2 f ) is no longer guaranteed to be positive
definite. Duong & Hazelton (2003) observe that positive definiteness is rein-
stated by using a single pilot bandwidth for all the elements, and derived their
ad hoc pilot as the minimiser of the sum of all AMSEs of the individual scalar
estimators:

SAMSE(g) =
4

∑
r1,...,rd=0

r1+···+rd=4

AMSE{ψr1,...,rd (g)}.

This has been subsequently refined for the more rigorous optimality crite-
rion MSE(ĤPI) = ‖E{(vecĤPI−HAMISE}‖2 and for unconstrained pilot ma-
trices by Chacón & Duong (2010, Theorems 1–2). As stated previously in
Equation (3.13), MSE(ĤPI) = const ·AMSE{ψ̂ψψ4(G)}{1+ o(1)} where the
constant does not affect the optimisation with respect to G. Furthermore the
squared bias dominates the corresponding variance in the AMSE{ψ̂ψψ4(G)},
so optimal selection can be based on a bias minimisation of the type G4 =
argminG∈F‖Bias{ψ̂ψψ4(G)}‖2, which is Equation (3.14).

For smoothed cross validation, the calculations are similar but more
complicated (Chacón & Duong, 2011, Theorems 1–3) with the result that
MSE(ĤSCV) = ‖E{(vecĤSCV−HMISE}‖2= const ·AMSE∗{ψ̂ψψ4(G)}.

It should be noted also that, through the use of Fourier analysis and a
careful choice of the truncation frequency (which is equivalent to using the
infinite-order sinc kernel and a pilot bandwidth), recently Wu et al. (2014)
were able to obtain an estimator ψ̃ψψ4 such that the difference ψ̃ψψ4−ψψψ4 is of
order n−1/2 in probability for sufficiently smooth densities, resulting in a rel-
ative rate of convergence of the corresponding H̃PI to HAMISE of order n−1/2

as well. Nonetheless, the relative rate of convergence of H̃PI to HMISE remains
n−2/(d+4), since this is the order of the approximation of HAMISE to HMISE.

3.10.3 Convergence rates with data-based bandwidths

The computation of a data-based bandwidth Ĥ is an intermediate step to the
computation of the density estimate f̂ (xxx;Ĥ). So an entirely rigorous mathe-
matical analysis requires the examination of the MISE of this ‘nested’ esti-
mator f̂ (xxx;Ĥ). Despite this, the majority of results for kernel estimators are
usually stated, as we have done, in terms of the MISE{ f̂ (·;H)} where the
bandwidth is non-random and does not depend on the data. This appears to
be a startling oversight as there are few reported results for f̂ (xxx;Ĥ). However
this is much less serious than it first appears, as using the standard results for
the convergence of random variables, then MISE{ f̂ (·;Ĥ)} is automatically
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assured once the convergence of the MISE{ f̂ (·;H)} to zero and the Ĥ to
HAMISE are established, as the MISE is an smooth integral operator. Tenreiro
(2001) establishes that, for all d, the difference between MISE{ f̂ (·;Ĥ)} and
MISE{ f̂ (·;H)} is O(n−(d+8)/(2d+8)) for all the bandwidth selectors consid-
ered in Table 3.1, which is dominated by the minimal MISE{ f̂ (·;H)} rate of
O(n−4/(d+4)). This implies, from a practical data analysis point of view, that
we can use f̂ (xxx;Ĥ) with confidence even if we only establish the convergence
of f̂ (xxx;H).

Likewise, the relative convergence rates for ĤPI,ĤSCV in Table 3.1 are es-
tablished assuming that the optimal pilot bandwidths GAMSE are non-random,
whereas for practical data analysis, the Ĝ are computed from the data as in
Algorithms 4 and 5. Since Ĝ converges to GAMSE, then the regularity imposed
by (A1)–(A3) in Conditions A implies that the ĤPI,ĤSCV remain convergent.
Tenreiro (2003) establishes the convergence rate for a univariate plug-in se-
lector with data-based pilot bandwidths, though with slightly different condi-
tions to ours. The unconstrained multivariate case remains unestablished.



Chapter 4

Modified density estimation

The previous chapters treated the standard setup for density estimation, in
which the normal kernel, with a fixed, global bandwidth is employed to anal-
yse data with an infinite support (or a support without a rigid boundary) and
without heavy tails. When these classical conditions do not hold, various
modifications have been introduced. Section 4.1 develops variable bandwidth
estimators which apply varying amounts of smoothing to tackle heavy-tailed
data. Sections 4.2–4.3 present transformation and boundary kernel estima-
tors to tackle bounded data. Sections 4.4–4.5 examine the role of the ker-
nel function and the alternatives to the normal kernel. Section 4.6 fills in the
previously omitted mathematical details of the considered modified density
estimators.

4.1 Variable bandwidth density estimators

The standard kernel density estimator f̂ in Equation (2.2) assigns a probabil-
ity mass to the neighbourhood of each data point XXX i according to the action of
the scaled kernel function KH(xxx−XXX i), i = 1, . . . ,n. As H is a constant matrix,
this applies a constant amount of smoothing throughout the data space. Vari-
able bandwidth estimators extend f̂ by varying the bandwidth. These variable
estimators are also known as adaptive estimators. The underlying idea is that,
for data-sparse regions, a large bandwidth applies smoothing over a larger
region to compensate for the few nearby data points, and conversely, for data-
dense regions, a small bandwidth applies smoothing in a smaller region due
to the presence of many nearby data points. Variable density estimators are
divided into two main classes depending on the method of varying the band-
width: there exist several competing nomenclatures, and we adopt that of Sain
& Scott (1996).

67
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4.1.1 Balloon density estimators

The first class is the balloon density estimators where the bandwidth varies
with the estimation point xxx

f̂ball(xxx;H(xxx)) = n−1
n

∑
i=1

KH(xxx)(xxx−XXX i).

To account for the idea of using a larger bandwidth in data-sparse regions,
in their original paper Loftsgaarden & Quesenberry (1965) propose class A

nearest neighbour selectors H(xxx) = δ(k)(xxx)2Id where δ(k)(xxx) is the distance
from xxx to the k-th nearest data sample point (k-th nearest neighbour). General
bandwidth functions in the above equation were not introduced until Jones
(1990).

The pointwise AMSE of f̂ball is the almost exactly the same as that for the
fixed bandwidth estimator f̂ , namely

AMSE{ f̂ball(xxx;H(xxx))}= n−1|H(xxx)|−1/2R(K) f (xxx)

+ 1
4 m2(K)2{D⊗2 f (xxx)> vecH(xxx)

}2
.

Analogously, HAMSE(xxx) = argminH∈F AMSE{ f̂ball(xxx;H)} is a suitable oracle
target bandwidth. As noted in Terrell & Scott (1992, Section 5), the existence
of an explicit formula for this oracle bandwidth depends on the definiteness
properties of the Hessian matrix H f (xxx). Observe that

{
D⊗2 f (xxx)> vecA

}2
=

tr2{H f (xxx)A} and that the minimum of this functional over the matrices A
with |A| = 1 is attained at |H f (xxx)|1/dH f (xxx)−1, with a minimum value of
d2|H f (xxx)|2/d , see Celeux & Govaert (1995, Theorem A.1). Therefore, writing
H = λA with |A| = 1 and reasoning as in Section 2.9.2, if H f (xxx) is positive
definite, then

HAMSE(xxx) =
{

R(K) f (xxx)
m2(K)2d

}2/(d+4)

|H f (xxx)|1/(d+4)H f (xxx)−1n−2/(d+4).

The disadvantage of this formula for HAMSE(xxx) is that is not applicable for
those estimation points whose Hessian is not positive definite. So to progress
with its analysis, we let H(xxx) = h(xxx)2H0, for a fixed matrix H0. While this is
not maximally general, it remains in the F class and the explicit optimiser is
HAMSE(xxx) = hAMSE(xxx)2H0, where

hAMSE(xxx) =
[

dR(K) f (xxx)
m2(K)2|H0|1/2{D⊗2 f (xxx)> vecH0}2

]1/(d+4)

n−1/(d+4)
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which is almost identical to Terrell & Scott (1992, Proposition 6). The sub-
optimality of hAMSE(xxx)2H0 is compensated by the varying nature of the band-
widths hAMSE(xxx) which adapt the smoothing according to the local data den-
sity. In high density regions the curvature is high, so hAMSE is smaller, and in
low density regions the curvature is flatter, so hAMSE is larger. The minimal
AMSE is O(n−1hAMSE(xxx)−d +hAMSE(xxx)2) = O(n−4/(d+4)) which is the same
rate as for fixed bandwidth estimator f̂ , though it has been established that
the coefficient for the former is smaller than the latter (Cao, 2001).

A disadvantage of f̂ball is that it is not guaranteed to be a proper den-
sity function: whilst it is non-negative, its integral is not one and is not even
guaranteed to be finite for general f . Another undesirable property is that the
potentially unbounded domain of HAMSE(xxx) could lead to very distant points
to xxx contributing to the density estimate at xxx, disrupting the local averaging
nature of kernel estimators. Moreover, despite the existence of some propos-
als for data-based selection of the local bandwidth H(xxx) (Hall & Schucany,
1989; Hall, 1993; Hazelton, 1996; Sain, 2001), for some classes of densities
it has been shown that it is impossible to construct consistent data-based local
bandwidth selectors (Devroye & Lugosi, 2001b). All this has not facilitated
the widespread use of balloon density estimators.

4.1.2 Sample point density estimators

Another type of variable kernel estimator is the sample point estimator, as
devised by Breiman et al. (1977), where a different bandwidth is employed to
rescale the kernel around each data point

f̂SP(xxx;H)≡ f̂SP(xxx;H1, . . . ,Hn) = n−1
n

∑
i=1

KHi(xxx−XXX i).

The estimator f̂SP resolves some of the disadvantages of the balloon estimator
f̂ball. The former remains a proper density function if K is a second order
kernel. There are as many bandwidths as data points n which, for modest
sample sizes, is less likely to lead to overparametrisation than the bandwidth
function for f̂ball, which requires a different bandwidth at each estimation
point. Due to the dependence on the data points, it is also common to write
Hi = H(XXX i).

Similar to Loftsgaarden & Quesenberry (1965), Breiman et al. (1977)
proposed the selectors Hi = δ(k)(XXX i)

2Id where δ(k)(XXX i) is the k-th nearest
neighbour distance to XXX i. Sain (2002) established that this nearest neighbour-
based choice is asymptotically equivalent to Hi = f (XXX i)

−2/dh2Id , and also
reported that Breiman et al. (1977) themselves admitted that the numerical
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performance of their selectors did not perform as well for the univariate case
as in the bivariate case, though the latter were not able to explain this appar-
ent inconsistency. This was resolved by Abramson (1982) who proposed the
eponymous selector HAb,i = f (XXX i)

−1h2Id for all dimensions d. Observe that
for d = 1, the Breiman et al. bandwidths are proportional to f (XXX i)

−2 which
is a different order of magnitude compared to the f (XXX i)

−1 Abramsom band-
widths, which explains the former’s unsatisfactory performance. For d = 2,
these bandwidths coincide so their bivariate performances are identical.

The calculation of the AMSE with the Abramsom selector involves some
complex algebra. The resulting expressions in Abramson (1982), Hall & Mar-
ron (1988), Terrell & Scott (1992), or Bowman & Foster (1993a) are not in a
suitable form for data-based bandwidth selection. The most intuitive deriva-
tion is the multivariate generalisation of Jones et al. (1994) which yields

AMSE{ f̂SP(xxx;HAb)}= n−1h−dR(K) f (xxx)1+d/2 + 1
576 h8{mmm4(K)>λλλ (xxx)}2

(4.1)

where mmm4(K) =
∫
Rd xxx⊗4K(xxx)dxxx and

λλλ (xxx) = D⊗4{ f (xxx)−1}
= 24{D f (xxx)}⊗4/ f (xxx)5−36[D⊗2 f (xxx)⊗{D f (xxx)}⊗2]/ f (xxx)4

+[6{D⊗2 f (xxx)}⊗2 +8D⊗3 f (xxx)⊗D f (xxx)]/ f (xxx)3−D⊗4 f (xxx)/ f (xxx)2.

This has an optimiser at

hAb(xxx) =
[

72dR(K) f (xxx)1+d/2

{mmm4(K)>λλλ (xxx)}2

]1/(d+8)

n−1/(d+8).

These bandwidths induce in f̂SP a bias of order h4, which improves on the
order h2 bias of a fixed, global bandwidth. This bias order is the same as that
achieved using a fourth order kernel for a fixed bandwidth estimator, although
without the side effect of possible negativity, see Section 4.4. The minimal
MSE rate of f̂SP is thus of order n−8/(d+8), which is faster than the n−4/(d+4)

rate for f̂ball. This has contributed to the widespread use of the Abramson
bandwidths. A more recent proposal posited by Sain (2002) is a bandwidth
function which is constant within the bins of an estimation grid, but it appears
not to have challenged the prevalence of the older Abramson bandwidths.

4.1.3 Bandwidth selectors for variable kernel estimation

The formulas for hAMSE(xxx) and hAb(xxx) involve the unknown density f and its
derivatives. As usual, they can be estimated using pilot estimators, although
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the important practical issues of these pilot estimators need to be resolved be-
fore variable kernel estimators reach the same level of maturity as fixed band-
width estimators. Nonetheless, we still wish to illustrate the potential gains
of the former for finite samples so, for simplicity, we take the normal scale
bandwidth ĤNS,r = {4/(d + 2r)}2/(d+2r+2)n−2/(d+2r+2)S for the r-th order
density derivative estimator D⊗r f̂pilot, which is developed in Equation (5.18)
in Chapter 5. Then we take Ĥball(xxx) = ĥball(xxx)2Id where

ĥball(xxx) =
[

d f̂pilot(xxx;ĤNS,2)

(4π)d/2{D⊗2 f̂pilot(xxx;ĤNS,2)> vecId}2

]1/(d+4)

n−1/(d+4)

for the balloon estimator, and ĤAb,i = f̂pilot(XXX i;ĤNS,4)
−1ĥ2

Ab,iId where

ĥAb,i = ĥAb(XXX i) =

[
8d f̂pilot(XXX i;ĤNS,4)

1+d/2

(4π)d/2{(vec> Id)⊗2λ̂λλ (XXX i;ĤNS,4)}2

]1/(d+8)

n−1/(d+8)

for the sample point estimator. Whenever the numerator and/or denominator
is zero, this will lead to undefined density estimates: for any xxx where this is
the case for ĥball(xxx), then f̂ (xxx) is set to 0, and for any XXX i where this is the
case for ĥAb,i, then XXX i is excluded from the computation. An optimal strategy
to deal with these cases is one of the outstanding issues in variable kernel
estimation.

We note that these two classes of balloon and sample point estimators are
not mutually exclusive and could even be combined (Jones, 1990).

Example 4.1 The fixed and variable density estimates on a subset of the
World Bank development indicators data from Section 1.1, the annual GDP
growth rate (%) and the annual inflation rate (%), are displayed in Fig-
ure 4.1. Figure 4.1(a) is the scatter plot of the n = 177 nations with com-
plete measurements. Most of these are concentrated around (5%, 5%), though
there are a few extreme outlying pairs. All of these data, including the out-
liers were utilised in calculations as no pre-processing was applied to re-
move them, indicating that variable kernel methods robustly handle outliers.
In the lower left of this panel is the normal kernel with fixed bandwidth
ĤPI = [2.80,0.63;0.63,2.65]. Figure 4.1(b) is the fixed density estimate with
this ĤPI. The constant smoothing applied by a fixed bandwidth results in the
bumps centred at the data points in the tails. Since these GDP growth and
inflation rates have similar marginal spreads, the variable bandwidth func-
tions from class A are suitable without any re-scaling. Figure 4.1(c) is the
bandwidth function Ĥball(xxx) = ĥball(xxx)2I2 for xxx over a grid: the grid points
with no contours imply that ĥball is zero or undefined. The contours are
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1 Variable bandwidth density estimates for the World Bank GDP-inflation
data. The x-axis is the annual GDP growth rate (%) and the y-axis is the inflation rate
(%). (a) Scatter plot of the n = 177 data pairs, with a normal kernel with bandwidth
ĤPI = [2.80,0.63;0.63,2.65]. (b) Fixed bandwidth density estimate f̂ with ĤPI. (c)
Balloon variable bandwidth function Ĥball. (d) Balloon variable density estimate f̂ball
with Ĥball. (e) Abramson bandwidth function ĤAb,i. (f) Sample point variable density
estimate f̂SP with ĤAb,i.
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the most peaked near the densest data region, and tend to increase in size
as we move away from this region. The balloon density estimate with this
Ĥball(xxx) is shown in Figure 4.1(d), where we observe that the bumps for the
fixed bandwidth estimate in (b) are attenuated and the height of the main
modal region is increased. Figure 4.1(e) shows the Abramsom bandwidths
ĤAb,i = f̂pilot(XXX i;ĤNS,4)

−1ĥ2
Ab,iI2 centred on (a subset of) the data points, and

the induced kernel contours are more clearly inversely proportional to the data
density. The sample point estimator is shown in Figure 4.1(f). In comparison
to the balloon estimator, the main modal height is higher, and the tail bumps
more attenuated, though the minor mode at the isolated data point (–61.8%,
13.3%) is more pronounced. �

4.2 Transformation density estimators

The standard kernel density estimator f̂ in Equation (2.2) assigns a probabil-
ity mass to the neighbourhood of each data point XXX i according the action of
the scaled kernel function KH(xxx−XXX i), i = 1, . . . ,n. In the case where the data
support contains a rigid boundary, for a data point XXX i sufficiently close to this
boundary, the scaled kernel assigns a positive probability mass outside of the
support, which leads to a local under-estimation of the density and hence an
increased bias of the estimator.

A major class of modified density estimators for bias reduction are the
transformation density estimators, introduced by Devroye & Györfi (1985);
Silverman (1986). Let ttt : Rd→Rd be a known function which is component-
wise monotone, i.e., the component functions t j, j = 1, . . . ,d are invertible.
The usual relation between the density f̂YYY of YYY = ttt(XXX) and the density f
of XXX is fYYY (yyy) = Jttt(xxx)−1 f (xxx) where Jttt(xxx) is the Jacobian of ttt. Inverting this
equation, we have the transformation density estimator

f̂trans(xxx;H) = Jttt(ttt−1(yyy)) f̂YYY (yyy;H) = Jttt(xxx) f̂YYY (ttt(xxx);H). (4.2)

When the data support is (0,∞)d , a suitable transformation is t(x j) =
log(x j). Each inverse function is t−1

j (x j) = exp(x j), and Jacobian Jttt(xxx) =
1/(x1 · · ·xd), which leads to the logarithm transformation density estimator

f̂trans(xxx;H) = exp[−(y1 + · · ·+ yd)] f̂YYY (yyy;H) = 1/(x1 · · ·xd) f̂YYY (log(xxx);H).
(4.3)

Since the transformed YYY i have infinite support, we can apply any of the band-
width selection and density estimation methods in Chapters 2–3, and then
back transform to the bounded support of XXX i in Equation (4.3).



74 MODIFIED DENSITY ESTIMATION

Example 4.2 We illustrate the logarithm transformation density estimator
on a subset of the World Bank development indicators data: carbon diox-
ide (CO2) emissions per capita (thousands Kg) and the gross domestic prod-
uct (GDP) per capita (thousands of current USD). The scatter plot in Fig-
ure 4.2(a) shows that most observations are located close to the origin and the
CO2 emissions and the GDP tend to follow a positive correlation trend.

(a)

(b) (c)

Figure 4.2 Transformation density estimate for the World Bank CO2-GDP data. The
horizontal axis is the CO2 emissions per capita (thousands Kg) and the vertical axis
is the GDP per capita (thousands current USD). (a) Scatter plot of the n = 245
data pairs. (b) Standard density estimate, with bandwidth [1.44,2.83;2.83,15.37]. (c)
Logarithm transformation density estimate with bandwidth [0.32,0.26;0.26,0.29].

If we apply a standard density estimate with a plug-in bandwidth ĤPI =
[1.44,2.83;2.83,15.37] without taking into account of the boundary near the
origin, we observe that it assigns a significant probability mass to negative
values for the CO2 emissions and GDP in Figure 4.2(b). This is rectified by
the log transformation estimator in Figure 4.2(c) with a plug-in bandwidth
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[0.32,0.26;0.26,0.29] computed from the log-transformed data pairs. For the
log transformation density estimate in Figure 4.2(c), we observe that it also re-
moves the undersmoothed contours in Figure 4.2(b). In addition to correcting
for the bounded data support, it mitigates the appearance of spurious bumps
in the upper tail from utilising a fixed, global bandwidth with highly spatially
inhomogeneous data. �

From Equation (4.3), the expected value of f̂trans at an estimation point xxx
is

E{ f̂trans(xxx;H)}
= 1/(x1 · · ·xd){ fYYY (log(xxx))+ 1

2 m2(K)(vec>H)D⊗2 fYYY (log(xxx))}{1+o(1)}
= f (xxx)+ 1

2 m2(K)(vec>H)D⊗2 fYYY (log(xxx))/(x1 · · ·xd){1+o(1)}.

For a fixed H, the bias of f̂trans depends on the ratio D⊗2 fYYY (log(xxx))/(x1 · · ·xd).
For the World Bank data in Figure 4.2, this ratio does appear to tend to zero
as xxx→ 000, so there is no evidence of a systematic bias at the origin, which is
also confirmed visually.

For the case of non-zero bias at the boundary, other approaches can be
pursued to improve on the logarithm transformation density estimator. Possi-
bilities include using a transformation from the richer shifted power family:
t(x j) = x j + λ1)

λ2 sign(λ2) for λ2 6= 0, and t(x j) = log(x j + λ1) for λ2 = 0,
see Wand et al. (1991). The logarithm transformation is the special case
λ1 = λ2 = 0, and so to utilise the richness of this family, these authors pro-
pose data-based estimators for λ1,λ2. Ruppert & Cline (1994) introduced
t(x j) = G−1(F̂X j(x j;g j)), where F̂X j(·;g j) is the kernel estimator of the j-th
marginal cumulative distribution function of XXX with bandwidth g j, and G is
any known cumulative distribution which can be chosen to control the bound-
ary bias, though estimating these extra parameters and/or functions have not
won widespread favour over the simpler logarithm transformation.

When the data are supported on a hyper-rectangle, rather than (0,∞)d ,
then, without loss of generality, we can consider the unit hyper-rectangle as
the data support. In this case, the transformation density estimator is appli-
cable if we use the logit transformation t j(x j) = log(x j/(1− x j)) or the pro-
bit transformation t j(x j) = Φ−1(x j) where Φ is the probit function (quantile
function of standard normal random variable). Their properties are similar to
those already explored, though we note that as the boundary region occupies
more volume, more care is required to control the boundary bias. Geenens
(2014) posited local polynomial adjustments of univariate probit density es-
timators in the boundary region to accomplish this control, accompanied by
their bandwidth selection strategies.
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Transformation density estimators were not initially introduced as bound-
ary correction methods, but to improve density estimation under conditions
such as spatial inhomogeneity and heavy tails, as reviewed in Geenens (2014),
and as illustrated in Figure 4.2.

4.3 Boundary kernel density estimators

Whereas transformation estimators apply a transformation function which
implicitly modifies the kernel function in order to reduce the bias in the
boundary region, an alternative approach involves explicitly modifying the
kernel functions in the boundary region from the usual symmetric to asym-
metric functions to account for the rigid boundary.

4.3.1 Beta boundary kernels

The simplest bounded support region is a (unit) hyper-rectangle. A suitable
starting point here is the beta boundary kernel of Chen (1999). The univari-
ate scaled beta boundary kernel is Kbeta(1)(y;x,h) = Beta(y;α1,h(x),α2,h(x))
for 0 ≤ x,y ≤ 1, where Beta(y;α1,α2) = yα1−1(1− y)α2−1/B(α1,α2) is the
density function for a beta random variable with shape parameters α1,α2,

α1,h(x) = ρh(x),α2,h(x) = (1− x)/h2 x ∈ [0,2h2)

α1,h(x) = x/h2,α2,h(x) = (1− x)/h2 x ∈ [2h2,1−2h2]

α1,h(x) = x/h2,α2,h(x) = ρh(1− x) x ∈ (1−2h2,1]

and ρh(u) = 2h4 + 5/2− (4h4 + 6h2 + 9/4− u2 − u/h2)1/2, following the
notation of Jones & Henderson (2007). At a point x, we compute the
mean of Xi

α1,h(x)−1(1−Xi)
α2,h(x)−1/B(α1,h(x)+α2,h(x)), i = 1, . . . ,d. Com-

pare this to the balloon variable estimator f̂ball(x;h(x)) with symmetric
Beta(3/2,3/2) kernels where we compute the mean of 8(x−Xi)

1/2(h(x)+
Xi− x)1/2/[πh(x)2].

A multivariate beta density was introduced by Lee (1996) and Olkin
& Liu (2003), though it is not apparent how it can be modified to mimic
the properties of Kbeta(1) in order for it to be a spherically symmetric
boundary kernel. So we use the less general product kernel Kbeta(yyy;xxx,hhh) =
∏

d
j=1 Kbeta(1)(y j;x j,h j) for xxx,yyy ∈ [0,1]d . This leads to a beta boundary den-

sity estimator

f̂beta(xxx;hhh) = n−1
n

∑
i=1

Kbeta(XXX i;xxx,hhh).
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Chen (1999) shows that the univariate asymptotic expected value is

E{ f̂beta(x;h)}= f (x)+


h2ρ∗(x) f ′(x){1+o(1)} x ∈ [0,2h2)
1
2 h2x(1− x) f ′′(x){1+o(1)} x ∈ [2h2,1−2h2]

h2ρ∗(1− x) f ′(x){1+o(1)} x ∈ (1−2h2,1]

where ρ∗(x) = (1−x)[ρ(x)−x/h2]/[1+h2ρ(x)−x], which is O(h2) in all of
[0,1]; and that the variance is O(n−1h−1) in the interior and O(n−1h−2) in the
boundary, though without fully elucidating the coefficients. The multivariate
bias and variance have not been established.

Without a tractable expression for the MISE{ f̂beta(·;hhh)}, for bandwidth
selection, Bouezmarni & Rombouts (2010) proposed an unbiased cross
validation selector ĥhhUCV which does not require it. They established that
MISE{ f̂beta(·; ĥhhUCV)} converges in probability to infhhh>0 MISE{ f̂beta(·;hhh)},
but did not quantify a relative rate of convergence of ĥhhUCV. Furthermore, the
computational load and the large variability of this UCV selector leads us to
search for more efficient and stable selectors.

As a plug-in estimator of AMISE{ f̂beta(·;hhh)} remains elusive, observe
that its minimiser is of order n−1/(d+4), if we temporarily ignore the con-
tribution from the boundary region, which is the same order as the optimal
bandwidth for f̂ . Since Kbeta(1)(·,1/2,h) is a Beta(1/(2h2),1/(2h2)) ran-
dom variable at the midpoint of the unit interval, its associated variance is
h2/[4(1+ h2)] = h2/4{1+ o(1)}. Noting that the variance associated with a
normal kernel K(1) is h2, then hhhbeta = 2diag(H1/2

AMISE,D){1+ o(1)} is a suit-
able bandwidth for f̂beta, where HAMISE,D is the diagonal matrix version of
HAMISE from Section 2.7.

4.3.2 Linear boundary kernels

The boundary beta density estimator is restricted to hyper-rectangular data
supports. To analyse more general, yet fully known, compact data supports
Ω ⊂ Rd , we require some further notation. Let B(xxx) = {h−1(xxx− yyy) : yyy ∈ Ω}
for a constant scalar h. This h defines the extent of the boundary region
B around xxx where we apply a boundary correction. Let Ω(xxx;H) = {(1−
h−1H1/2)xxx−h−1H1/2yyy : yyy ∈Ω}. If vecH→ 0 as n→ ∞, then the {Ω(xxx;H)}
form a sequence of scaled versions of the data support Ω which are shrinking
towards xxx.
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The pointwise expected value of the standard estimator f̂ is

E{ f̂ (xxx;H)}=
∫

Ω(xxx;H)
KH(xxx− yyy) f (yyy)dyyy =

∫
B(xxx)

K(www) f (xxx−H1/2www)dwww

= m0(B(xxx);K) f (xxx)+mmm1(B(xxx);K)>H1/2D f (xxx)

+ 1
2 mmm2(B(xxx);K)>(H1/2)⊗2D⊗2 f (xxx){1+o(1)}

where mmmr(B(xxx);K) =
∫
B(xxx) www⊗rK(www)dwww ∈ Rdr

is the r-th partial moment of
K restricted to B(xxx). If xxx is in the interior region, then there is no change to
the usual expression in Section 2.6, as m0(B(xxx);K) = 1,mmm1(B(xxx);K) = 0 and
the order ‖vecH‖ bias prevails. If xxx is in the boundary region and Ω(xxx;H) is
not entirely contained within Ω, then m0(B(xxx);K) 6= 1,mmm1(B(xxx);K) 6= 0. So
the bias of f̂ (xxx;H)/m0(B(xxx);K) is mmm1(B(xxx);K)>H1/2D f (xxx)/m0(B(xxx);K)
which is order ‖vecH1/2‖. This is the mathematical formulation of the
increased boundary bias for the uncorrected density estimator applied to
bounded data.

To resolve this boundary bias problem, Gasser & Müller (1979) proposed
univariate linear boundary kernels which are the solution of variational prob-
lems, e.g., the Epanechnikov kernel has the minimum MISE amongst second
order kernels. These were extended to multivariate product kernels in Müller
& Stadtmüller (1999) which can correct the boundary bias for an arbitrarily
shaped compact support with a piecewise linear boundary by suitably modi-
fying the variational problem. As noted by Hazelton & Marshall (2009), this
general approach is somewhat unwieldy for practical data analysis, and they
propose a computationally simpler linear boundary kernel as a degree 1 poly-
nomial in xxx multiplying a given second order kernel K, i.e.

KLB(xxx) = (a0 +aaa>1 xxx)K(xxx) (4.4)

where

a0 = 1/[m0(B(xxx);K)−mmm1(B(xxx);K)>M2(B(xxx);K)−1mmm1(B(xxx);K)]

aaa1 =−a0M2(B(xxx);K)−1mmm1(B(xxx);K)

and M2(B(xxx);K) =
∫
B(xxx) wwwwww>K(www)dwww. If K is a product kernel, then KLB re-

duces to a Müller & Stadtmüller (1999) product kernel. Moreover, unlike the
Müller & Stadtmüller kernel, KLB is straightforward to be cast as a spherically
symmetric kernel.

The scaled linear boundary kernel is KLB,H(xxx) = (a0 +aaa>1 H−1/2xxx)KH(xxx)
and the corresponding linear boundary kernel estimator is

f̂LB(xxx;H) = n−1
n

∑
i=1

KLB,H(xxx−XXX i).
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Its pointwise AMSE is

AMSE{ f̂LB(xxx;H)}= n−1|H|−1/2[a2
0m0(B(xxx);K2)+2a0aaa>1 mmm1(B(xxx);K2)

+(aaa>1 )
⊗2mmm2(B(xxx);K2)

]
+ 1

4

[
a0mmm2(B(xxx);K)>

+mmm3(B(xxx);K)>(aaa1⊗ Id2)
]⊗2

(H1/2)⊗4(D⊗2 f (xxx))⊗2. (4.5)

The bias of f̂LB is O(‖vecH‖) everywhere in Ω, whilst the variance is con-
trolled to remain O(n−1|H|−1/2). The minimal MSE rate of f̂LB in Ω is thus
O(n−4/(d+4)). For practical data analysis, the a0,aaa1 coefficients and the par-
tial moments mmm1(B(xxx);K) etc. can be numerically approximated by Riemann
sums for each xxx. This added computational cost is the trade-off of ensuring the
standard AMSE convergence behaviour also applies in the boundary regions.

The coefficients in Equation (4.4) require that M2 is invertible. In the case
that M2 is singular, then a0 = [1− aaa>1 mmm1(B(xxx);K)]/m0(B(xxx);K) and aaa1 is
the solution to [mmm1(B(xxx);K)mmm1(B(xxx);K)>−m0(B(xxx);K)M2(B(xxx);K)]aaa1 =
mmm1(B(xxx);K). The bias and variance properties remain the same.

Example 4.3 In Figure 4.3 is the comparison of these two boundary kernel
estimators with the standard estimator on a subset of the World Bank devel-
opment indicators data: the number of internet users per 100 inhabitants and
the added value of the agricultural production as a ratio of the total GDP (%).
Figure 4.3(a) is the scatter plot of the n = 177 nations with complete mea-
surements. In the upper right of this panel is the normal kernel with fixed
bandwidth ĤPI = [95.6,−21.8;−21.8,11.9]. The standard kernel estimator
with ĤPI is in Figure 4.3(b) and we observe that it exceeds the data support
delimited by the dashed grey lines.

The beta boundary kernels based on 2Ĥ1/2
PI,D are shown n Figure 4.3(c).

In the interior regions, the kernel Kbeta is symmetric whereas as we approach
the boundary regions, it becomes asymmetric with the probability mass being
transferred in the direction of the boundary which results in the kernel support
becoming correspondingly compressed. The beta boundary kernel estimator
is shown in Figure 4.3(d). In addition to not exceeding the data support, the
bimodality of the data is more apparent than for the fixed kernel estimator.

The linear boundary kernels KLB based on the normal kernel with ĤPI
are shown in Figure 4.3(e). Their supports vary less than those for the beta
boundary kernels due to less prominent shifts of the probability mass towards
the boundary. The normal linear boundary kernel estimator is shown in Fig-
ure 4.3(f). Again, the bounded data support is respected and the bimodal-
ity is apparent. It is less noisy than the beta boundary estimator, reflecting
our earlier observations for the gains in unconstrained matrices over diagonal
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3 Boundary kernel density estimates for the World Bank internet-
agriculture data. The x-axis is the percentage of internet users (%) and the y-axis
is the added value of agriculture as a ratio of the GDP (%). (a) Scatter plot of the
n = 177 data pairs, with a normal kernel with ĤPI = [95.57,−21.78;−21.78,11.90].
(b) Fixed bandwidth density estimate f̂ with ĤPI. (c) Beta boundary kernels Kbeta with
2(ĤPI,D)1/2. (d) Beta boundary density estimate f̂beta. (e) Normal linear boundary
kernel KLB with ĤPI. (f) Normal linear boundary density estimate f̂LB.
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bandwidth matrices. On the other hand, it appears to be oversmoothed very
close to the axes leading to the appearance of locally peaked regions, whereas
the beta boundary estimator has monotonically increasing density values. A
remedy to this could be combining linear boundary kernels with the variable
sample point bandwidths as posited by Marshall & Hazelton (2010). �

4.4 Kernel choice

The assumption (A1) in Conditions A defines the general properties of a rich
class of kernel functions. In practise, many fewer are utilised, as it has been
well-established that the kernel function choice is less important to the per-
formance of density estimators than the bandwidth choice. The most common
univariate non-normal kernels belong to the beta family, of which the most
well known are the uniform, Epanechnikov, biweight and triweight kernels,
all of which are of the form

K(1)(x;r) = B(r+1,1/2)−1(1− x2)r111{x ∈ [−1,1]}

for some r ≥ 0, where B(α1,α2) = Γ(α1)Γ(α2)/Γ(α1 +α2) is the beta func-
tion. The uniform kernel (r = 0) can be considered to be the simplest kernel,
the Epanechnikov kernel (r = 1) yields the minimal MISE (Epanechnikov,
1969), and the biweight (r = 2) and triweight (r = 3) kernels possess the
minimal integrated squared gradient and squared curvature respectively (Ter-
rell, 1990). Moreover, the normal kernel can be considered the limiting case
as r → ∞. Silverman (1986, Table 3.1, p. 43) shows that the loss of MISE
efficiency is small in using other beta family kernels or the normal kernel in-
stead of the Epanechnikov kernel. See also Wand & Jones (1995, Section 2.7,
pp. 28–31) for a concise summary of the choice of an optimal kernel.

For multivariate data, the question of kernel choice is more complicated as
there are two main ways of generating a multivariate kernel, given a univariate
kernel K(1):

KP(xxx) = cP

d

∏
i=1

K(1)(xi), KS(xxx) = cSK(1)((xxx
>xxx)1/2)

where KP is a product kernel and KS is a spherically symmetric kernel. The
coefficients cP,cS are normalisation constants so that the integrals of KP,KS

remain one. There does not appear to be much difference between these two
until we introduce their scaled versions. The product kernel is suitable only
with a bandwidth matrix of class A or D, as its scaled version is KP

H(xxx) =
cP ∏

d
i=1 h−1

i K(1)(xi/hi), whereas the spherically symmetric kernel can be used
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with any bandwidth matrix class since KS
H(xxx) = cS|H|−1/2K(1)((xxx>H−1xxx)1/2).

Note that KS
H 6≡ KP

H even for H ∈ D for general K(1). The normal kernel is
the only kernel for which this holds, which means it is the only case where
computing estimators with constrained or unconstrained matrices does not
require a different kernel.

The normalisation constant cS for a normal kernel is well known as
(2π)−d/2, whereas for a non-normal spherically symmetric kernel, it is non-
trivial to compute even if the univariate constant is known. This was only
recently solved by Duong (2015) for the beta family kernels.

Consider the family of spherically symmetric kernels KS(·;r) obtained
from the univariate beta kernels K(1)(·;r). Sacks & Ylvisaker (1981) state that
the spherically symmetric Epanechnikov kernel KS(·;1) is optimal in a MISE
sense rather than its product kernel counterpart. So the efficiencies of the other
kernels in the family can be expressed in the ratio Eff(KS(·;1),KS(·;r)) =
[C(KS(·;1))/C(KS(·;r))](d+4)/4 where C(K) = [R(K)4m2(K)2d ]1/(d+4), see
Wand & Jones (1995, p. 103). To achieve the same MISE as the optimal
Epanechnikov kernel with a sample size n, the kernel KS(·;r) requires a sam-
ple size of n/Eff(KS(·;1),KS(·;r)). These are calculated in Duong (2015)
and reproduced in Table 4.1 which extends Wand & Jones (1995, Table 2.1,
p. 31). For a fixed value of r the efficiency decreases as d increases, although
the loss of efficiency is small, except perhaps for the normal kernel for d = 4.

Efficiency
Kernel r d = 1 d = 2 d = 3 d = 4
Uniform 0 0.930 0.889 0.862 0.844
Epanechnikov 1 1.000 1.000 1.000 1.000
Biweight 2 0.994 0.988 0.982 0.977
Triweight 3 0.987 0.972 0.958 0.945
Normal ∞ 0.951 0.889 0.820 0.750

Table 4.1 Efficiencies Eff(KS(·;1),KS(·;r)) for spherically symmetric beta family
kernels, for d = 1,2,3,4 and r = 0,1,2,3,∞.

Whilst the normal kernel is more complicated than the polynomial beta
family kernels, and has a lower efficiency, the former allows for impor-
tant mathematical and computational simplifications and avoids any possi-
ble problems with the non-existence of higher order derivatives of the kernel
function when computing data-based bandwidth selectors. These desirable
properties translate into an overwhelming current utilisation of normal ker-
nels for multivariate density estimation.
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4.5 Higher order kernels

The kernels considered in the previous section are second order kernels,
which are non-negative functions whose first moment is zero, and whose sec-
ond moment is non-zero, as required by (A2) in Conditions A. More generally
a k-th order kernel has the property that the first (k−1) moments are zero and
the k-th moment is non-zero for some even integer k. Let f̂ (xxx;H,k) be the
density estimator constructed via a k-th order kernel, then

E{ f̂ (xxx;H,k)}=
∫
Rd

K(www) f (xxx−H1/2www)dwww

=
∫
Rd

K(www) f (xxx)
k

∑
i=0

1
j!
(−www>H1/2)⊗ jD⊗ j f (xxx)dwww{1+o(1)}

= f (xxx)+ 1
k! mmm
>
k (K)(H1/2)⊗kD⊗k f (xxx){1+o(1)}

where mmmk(K) =
∫
Rd xxx⊗kK(xxx)dxxx. The bias is now of order ‖vecHk/2‖, which

decreases faster as the order k increases, so higher order kernels offer a
method for bias reduction. Moreover, it can be analogously shown that the
asymptotic IV remains unaffected, so that the MISE of f̂ (xxx;H,k) is of order
O(n−2k/(2k+d)), provided the density is k-times continuously differentiable,
with bounded and square integrable k-th order partial derivatives. The trade-
off is that for k > 2, f̂ (xxx;H,k) is no longer guaranteed to be a non-negative
function. It is also noteworthy that Jones & Foster (1993) asserted that the
most gain in practical data analysis performance is most likely to be from the
step from second to fourth order kernels, rather than for even higher order
kernels.

Whilst second order kernels can be taken as any symmetric unimodal
probability density function, higher order kernels are less easily encountered.
For univariate kernels, one such construction of a (k+2)-th order kernel is a
k-th polynomial multiplying the univariate normal kernel, as posited by Wand
& Schucany (1990). Another is a recursive formula where a (k+2)-th order
kernel is 1

k [(k+1)K(1)(x;k)+ xK′(1)(x;k)] given a k-th order kernel K(1)(x;k),
as introduced by Rustagi et al. (1991) and popularised by Jones & Foster
(1993). The extension of these approaches to multivariate product kernels is
straightforward, though appears not to be have been published yet, and the
case of spherically symmetric kernels remains an open problem.

Due to the lack of convincing gains in bias reduction for finite sample
sizes, the increased computation time and difficulty of construction, and the
loss of non-negativity of the resulting density estimator, higher order kernels
for density estimation have not entered into widespread use; see Marron &
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Wand (1992), Jones & Foster (1993), Marron (1994), Wand & Jones (1995,
Chapter 2.8, pp. 32–35) or Jones & Signorini (1997).

From a theoretical point of view, the minimax rates of convergence for
density estimation in the MISE sense can be shown to depend solely on the
degree of smoothness of the target density. If f is p-times differentiable, with
bounded p-th order partial derivatives, then the fastest possible MISE rate for
any density estimator (of kernel or any other type) is of order n−2p/(2p+d)

(Tsybakov, 2009). Moreover, for extremely smooth densities (e.g., infinitely
differentiable densities), the best MISE rate improves to n−1 up to logarithmic
coefficients (Watson & Leadbetter, 1963).

Since the convergence rate for second-order kernel density estimators is
n−4/(d+4) when the density f is twice differentiable with bounded second-
order partial derivatives, this means that kernel estimators attain the fastest
possible convergence rate for such class of densities. On the other hand, as
noted above, the fastest attainable MISE rate for a kernel estimator with a k-th
order kernel is n−2k/(2k+d), which implies that using a k-th order kernel im-
plicitly hinders the performance of the kernel density estimator for densities
which more than k-times differentiable. An option to avoid such limitations
is to employ infinite-order kernels, i.e, kernels K such that mmmk(K) = 0 for all
k.

Kernels with null moments of all orders can be constructed by impos-
ing that the Fourier transform of the kernel be identically equal to 1 on a
neighbourhood about the origin. These are known as superkernels and their
utility in density estimation has been explored in Devroye (1992) and Chacón
et al. (2007), where it is shown that superkernel density estimators are rate-
adaptive, in the sense that their MISE rate of convergence is the fastest pos-
sible as determined only by the degree of smoothness of the true density.
They even seem to defy the curse of dimensionality by achieving n−1 rates
(up to logarithmic coefficients) for extremely smooth densities, regardless the
dimension d (Politis & Romano, 1999). In practice, however, the problem of
bandwidth selection for superkernel density estimators has been insufficiently
addressed (Politis, 2003; Amezziane & McMurry, 2012), and they mostly re-
main as a theoretical tool to achieve rate adaptivity.

4.6 Further mathematical analysis of modified density estimators

4.6.1 Asymptotic error for sample point variable bandwidth estimators

To obtain the MSE of the sample point variable density estimator in Equa-
tion (4.1) with an unconstrained bandwidth matrix, we proceed with a multi-
variate generalisation of Jones et al. (1994).
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Theorem 4 Suppose that (A1)–(A3) in Conditions A hold. Further suppose
that the following conditions hold:

(A1’) The density function f is four times differentiable, with all of its fourth
order partial derivatives bounded, continuous and square integrable.

(A2’) The kernel K has finite fourth order moment mmm4(K) =
∫
Rd xxx⊗4K(xxx)dxxx.

For a non-random point xxx where f (xxx) 6= 0, the mean squared error of the
sample point estimator with the Abramson bandwidth function HAb(xxx) =
f (xxx)−1H, is

MSE{ f̂SP(xxx;HAb)}=
{

n−1|H|−1/2R(K) f (xxx)1+d/2

+ 1
576(mmm4(K)>)⊗2(H1/2)⊗8(λλλ (xxx))⊗2}{1+o(1)}

where λλλ (xxx) = 24 f (xxx)−5(D f (xxx))⊗4 − 36 f (xxx)−4(D⊗2 f (xxx) ⊗ (D f (xxx))⊗2 +
f (xxx)−3[8(D⊗3 f (xxx)⊗D f (xxx))+6(D⊗2 f (xxx))⊗2]− f (xxx)−2D⊗4 f (xxx).

Proof (Proof of Theorem 4) We begin by establishing the MSE{ f̂SP(xxx;ΓΓΓ}
for a general ΓΓΓ(xxx) = γ(xxx)H. The pointwise expected value at a point xxx is

E{ f̂SP(xxx;ΓΓΓ)}=
∫
Rd
|H|−1/2

γ(yyy)−d/2 f (yyy)K(γ(yyy)−1/2H−1/2(xxx− yyy))dyyy.

With the change of variables www = γ(yyy)−1/2H−1/2(xxx − yyy), then yyy = xxx −
γ(yyy)1/2H1/2www = xxx− γ(xxx)1/2H1/2www{1+o(1)}, and the expected value can be
expanded as follows:

E{ f̂SP(xxx;ΓΓΓ)}=
∫
Rd

K(www) f (xxx− γ(xxx)1/2H1/2www){1+o(1)}dwww

= f (xxx)+ 1
2 m2(K)(vec>H)D⊗2[ f (xxx)γ(xxx)]

+ 1
24 mmm4(K)>(H1/2)⊗4D⊗4[ f (xxx)γ(xxx)2]{1+o(1)}dwww

where the odd order terms in the Taylor expansion are omitted as they are
identically zero due to the symmetry of the kernel K. The pointwise variance
is Var{ f̂SP(xxx;ΓΓΓ)}= n−1 Var{KΓΓΓ(XXX)(xxx−XXX)}, so we require

E{{γ(XXX)d/2|H|−1/2K(γ(XXX)1/2H−1/2(xxx−XXX))}2}

=
∫
Rd
|H|−1

γ(yyy)−d f (yyy)K(γ(yyy)1/2H−1/2(xxx− yyy))2 dyyy

= |H|−1/2
γ(xxx)−d/2 f (xxx)R(K){1+o(1)}dwww

which dominates the O(1) term {E{γ(XXX)d/2|H|−1/2K(γ(XXX)1/2H−1/2(xxx −
XXX))}}2. Hence Var{ f̂SP(xxx;ΓΓΓ)}= n−1|H|−1/2R(K)γ(xxx)−d/2 f (xxx){1+o(1)}.
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For the Abramsom bandwidth function HAb, γ(xxx)≡ f (xxx)−1 then the sec-
ond order term in the Taylor expansion of E{ f̂SP(xxx;HAb)} is identically zero,
so the latter reduces to

E{ f̂SP(xxx;HAb)}= f (xxx)+ 1
24 mmm4(K)>(H1/2)⊗4D⊗4[ f (xxx)−1]{1+o(1)}.

To expand this fourth order derivative, we repeatedly apply the differential
d( f (xxx)−a) = −a f (xxx)−a−1D f (xxx)>dxxx. Starting with a = 1, then d( f (xxx)−1) =
− f (xxx)−2D f (xxx)>dxxx, i.e., the first derivative is D[ f (xxx)−1] = − f (xxx)−2D f (xxx).
Continuing, the fourth derivative is

D⊗4[ f (xxx)−1] = 24 f (xxx)−5(D f (xxx))⊗4−6 f (xxx)−4[Id⊗Kd2,d + Id2⊗Kd,d

+Kd2,d2 +ΛΛΛ⊗ Id ](D
⊗2 f (xxx)⊗ (D f (xxx))⊗2)

+2 f (xxx)−3[(ΛΛΛ⊗ Id)(Id2⊗Kd,d)+ Id4 ](D⊗3 f (xxx)⊗D f (xxx))

+2 f (xxx)−3(ΛΛΛ⊗ Id)(Kd,d2⊗ Id)(D
⊗2 f (xxx))⊗2− f (xxx)−2D⊗4 f (xxx)

where ΛΛΛ = Id ⊗Kd,d + Kd,d2 + Id3 , with Km,n denoting the (mn)× (mn)-
commutation matrix. See Appendix B or Magnus & Neudecker (1999,
Section 3.7) for the definition and main properties of the commuta-
tion matrix. Since the action of these combinations of identity and com-
mutation matrices does not affect the value of the inner product with
(H1/2)⊗4mmm4(K), the expected value simplifies to E{ f̂SP(xxx;HAb)} = f (xxx)+
1

24 mmm4(K)>(H1/2)⊗4λλλ (xxx){1 + o(1)}. The variance is Var{ f̂SP(xxx;HAb)} =

n−1|H|−1/2R(K) f (xxx)1+d/2{1+o(1)}. �

4.6.2 Asymptotic error for linear boundary density estimators

To compute the coefficients of the linear boundary kernel KLB(xxx) = (aaa0 +
aaa>1 )K(xxx) in Equation (4.4), we generalise the procedure of Hazelton & Mar-
shall (2009). We set the zeroth and first moment at xxx of KLB to be

m0(xxx;KLB) =
∫
B(xxx)

(a0 +aaa>1 xxx)K(xxx)dxxx = a0m0(xxx)+aaa>1 mmm1(xxx) = 1

mmm1(xxx;KLB) =
∫
B(xxx)

(a0 +aaa>1 xxx)xxxK(xxx)dxxx = a0mmm1(xxx)+M2(xxx)aaa1 = 000.

For brevity, we abbreviate the moments of K as mmm1(xxx) ≡ mmm1(B(xxx);K)
etc. by omitting the explicit dependence on B and K. Assuming the in-
vertibility of M2(xxx), the second equation yields aaa1 = −a0M2(xxx)−1mmm1(xxx).
Substituting this value of aaa1 into the first equation yields a0 = [1 −
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a>1 mmm1(xxx)]/m0(xxx) = [1 + a0mmm1(xxx)>M2(xxx)−1mmm1(xxx)]/m0(xxx), which has a0 =
1/[m0(xxx)−mmm1(xxx)>M2(xxx)−1mmm1(xxx)] as its solution.

We derive the MSE of the linear boundary density estimator in Equa-
tion (4.5) with an unconstrained bandwidth matrix here. Suppose that (A1)–
(A3) in Conditions A and (A2’) in Theorem 4 hold. The pointwise expected
value of f̂LB(xxx;H), for xxx such that m0(xxx) 6= mmm1(xxx)>M2(xxx)−1mmm1(xxx), is

E{ f̂LB(xxx;H)}

=
∫
B(xxx)

KLB(www)[ f (xxx)−www>H1/2D f (xxx)+ 1
2(www

>H1/2)⊗2D⊗2 f (xxx)]dwww

×{1+o(1)}
= m0(B(xxx);KLB) f (xxx)+ 1

2 mmm2(B(xxx);KLB)
>(H1/2)⊗2D⊗2 f (xxx){1+o(1)}

= f (xxx)+ 1
2

{
a0mmm2(xxx)>+mmm3(xxx)>(aaa1⊗ Id2)

}
(H1/2)⊗2D⊗2 f (xxx){1+o(1)}

since m0(B(xxx);KLB) = 1 and mmm1(B(xxx);KLB) = 0, and mmm2(B(xxx);KLB) =∫
B(xxx)(a0 +aaa>1 xxx)xxx⊗2K(xxx)dxxx = a0mmm2(xxx)+(aaa>1 ⊗ Id2)mmm3(xxx) 6= 0.

We also have that

E{KLB,H(xxx−XXX)2}

= |H|−1/2
∫
B(xxx)

KLB(www)2 f (xxx−H1/2www)dwww

= |H|−1/2[a2
0m0(B(xxx);K2)+2a0aaa>1 mmm1(B(xxx);K2)+(aaa>1 )

⊗2mmm2(B(xxx);K2)]

×{1+o(1)}.

As for the infinite support case, E{KLB,H(xxx−XXX)2} dominates [E{KLB,H(xxx−
XXX)}]2. The variance is therefore Var{ f̂LB(xxx;H)}= n−1 Var{KLB,H(xxx−XXX)}=
n−1E{KLB,H(xxx−XXX)2}{1+o(1)}.
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Chapter 5

Density derivative estimation

The density estimators examined in the previous chapters form a subset of a
wider class of curve estimators. Crucial information about the structure of the
underlying target density is not revealed by examining solely its values, and
is only discerned via its derivatives. For example, the local minima/maxima
are characterised as locations where the first derivative is identically zero and
the Hessian matrix is positive/negative definite. So there is great interest in
complementing the density estimators with the density derivative estimators.

The presentation of this chapter follows closely that of Chapters 2–3 on
density estimation. For brevity, we have deliberately omitted certain details
that are exact analogues of the zeroth derivative case (that is, the estimation
of the density itself): the reader is urged to become familiar with these ear-
lier chapters before perusing the current chapter. Sections 5.1–5.4 introduce
estimators of the derivatives of the density function and their practical band-
width selectors, focusing on the first and second derivatives (correspond to
Sections 2.2–2.4). Section 5.5 sets up a mathematical framework for optimal
bandwidth selection, akin to Sections 2.5–2.7. Sections 5.6–5.7 present au-
tomatic bandwidth selectors for density derivative estimation and summarise
their convergence rates, as natural but non-trivial extensions of those in Chap-
ter 3. As a case study, Section 5.8 focuses on obtaining explicit results for the
case of a normal density, which are required to compute data-based selec-
tors. Section 5.9 fills in the previously omitted mathematical details of the
considered density derivative estimators.

5.1 Kernel density derivative estimators

The vector notation for the r-th derivative of a multivariate function intro-
duced earlier in Section 2.6 is a crucial tool to manage higher order Taylor
expansions. Recall that for a function f : Rd → R, the expression D⊗r f (xxx)
denotes a vector of length dr containing all the r-th order partial derivatives,

89
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arranged in the order determined by the formal r-fold Kronecker power of the
gradient operator D= (∂/∂x1, . . . ,∂/∂xd).

The purpose of this chapter is to study the estimation of the r-th derivative
D⊗r f of a density function. The kernel estimator of D⊗r f was introduced by
Chacón et al. (2011) as the r-th derivative of the kernel density estimator,

D̂⊗r f (xxx;H) = D⊗r f̂ (xxx;H) = n−1
n

∑
i=1

D⊗rKH(xxx−XXX i). (5.1)

It is a multivariate generalisation of the kernel estimator first considered in
Bhattachatya (1967). Different variants in the univariate set up have been sug-
gested by Jones (1994).

The derivative of the kernel function is taken after the scaling with the
bandwidth matrix is applied, so a more explicit formula for each term in the
summation is

D⊗rKH(xxx−XXX i) = |H|−1/2(H−1/2)⊗rD⊗rK(H−1/2(xxx−XXX i)).

This expression greatly assists in implementing these estimators since it sep-
arate the roles of K and H. It is possible to propose such a direct estimator
because the kernel density estimator inherits its differentiability from the un-
derlying kernel function. This is a primary advantage of kernel estimators
over histograms as the discontinuities of f̂hist at the edges of the bins imply
that D⊗r f̂hist is not well-defined.

The most important special cases of the general problem are those of the
density gradient (r = 1) and the density Hessian (r = 2) estimation, so these
are explored in more detail, before returning to the general case.

5.1.1 Density gradient estimators

The density gradient is denoted as D f and its kernel estimator in Equa-
tion (5.1) simplifies to

D f̂ (xxx;H) = n−1|H|−1/2(H−1/2)
n

∑
i=1

DK(H−1/2(xxx−XXX i)). (5.2)

Equation (5.2) is the generalisation using an unconstrained bandwidth of the
kernel estimator introduced in Fukunaga & Hostetler (1975).

To complement the compact notation for the vectorised total derivative,
we denote a single partial derivative indexed by rrr = (r1, . . . ,rd) as

f (rrr)(xxx) =
∂ |rrr| f (xxx)

∂xr1
1 · · ·∂xrd

d
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where |rrr|= r1 + · · ·rd . For example, we utilise this notation for visualisation
purposes since we can usually only display one partial derivative at a time.

Since the density gradient can be both negative and positive, we compute
‘quasi-probability’ contours by applying the definition of probability con-
tours separately to the positive and negative parts of the density gradient i.e.,
f (rrr)+ (xxx) = f (rrr)(xxx)111{ f (rrr)(xxx) ≥ 0} and f (rrr)− (xxx) = f (rrr)(xxx)111{ f (rrr)(xxx) < 0}. Since
f (rrr)+ , f (rrr)− are not proper density functions, the probabilistic interpretation is
no longer valid as for the contours of f , but as this procedure adapts to any
range of density gradient values, it provides a useful choice for the contour
levels for visualisation.

Example 5.1 The partial density gradient estimates f̂ (1,0), f̂ (0,1) for the daily
temperature data, with the plug-in bandwidth [1.04,0.98;0.98,1.69], are
shown in Figure 5.1(a)–(b). The orange regions indicate the quasi-quartile
contours of positive gradients f̂ (1,0)+ , f̂ (0,1)+ , the purple regions the negative gra-
dients f̂ (1,0)− , f̂ (0,1)− , and the white regions represent the zones where the posi-
tive and negative gradients are below the first quasi-quartile (i.e., not far from
zero). Darker orange colours indicate larger positive gradients and darker pur-
ple colours larger negative gradients. This is an example of a divergent colour
scale (Zeileis et al., 2009).

As zero gradients coincide with local extrema, we focus on these regions.
Around (20◦C, 30◦C), the gradient contours are composed of the two coloured
regions with steep contours, separated only by a thin white region in which
a local mode resides. Around (10◦C, 20◦C) there is a larger white region
surrounded by gradual increments in the gradients in which a local anti-mode
resides. This anti-mode separates the upper mode from the lower mode at
around (5◦C, 15◦C).

As simultaneously interpreting the contour plots of the partial den-
sity gradients can be difficult, an alternative is the quiver or velocity plot
in Figure 5.1(c), where the direction and length of the arrows is de-
termined by the gradient vector. Longer arrows with larger heads indi-
cate steeper gradients, shorter arrows with smaller heads, flatter gradients.
These arrows follow the gradient ascent so they subtend a trajectory to-
wards the local modes. The density estimate f̂ in Figure 2.4 was computed
with bandwidth [0.67,0.60;0.60,1.04] which is smaller than the bandwidth
[1.04,0.98;0.98,1.69] for D f̂ . We defer the reasoning on how to calculate
the latter bandwidth matrix and the reasons why it is different from that for
density estimation to Sections 5.5 and 5.6. �
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(a)

(b) (c)

Figure 5.1 Density gradient estimates for the daily temperature data. The horizontal
axis is the daily minimum (◦C) and the vertical axis is the daily maximum temper-
ature (◦C). (a) Partial density gradient estimate f̂ (1,0). (b) Partial density gradient
estimate f̂ (0,1). The quasi-quartile contours are purple for positive gradients, orange
for negative gradients. (c) Quiver plot of the density gradient estimate D f̂ . The den-
sity gradient estimates are computed with the bandwidth [1.04,0.98;0.98,1.69].

5.1.2 Density Hessian estimators

As the density second derivative is denoted D⊗2 f , its kernel estimator is

D⊗2 f̂ (xxx;H) = n−1|H|−1/2(H−1/2)⊗2
n

∑
i=1

D⊗2K(H−1/2(xxx−XXX i)). (5.3)

Visualising the individual mixed partial derivatives in the density second
derivative concurrently is not trivial, and as the quiver plot representation is
not easily adapted to the vectorised second derivative matrix, we search for a
suitable alternative. As a local mode in f requires that its Hessian matrix H f
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be negative definite, then let

s(xxx) =−111{H f (xxx)< 0}abs(|H f (xxx)|) (5.4)

where abs(|H f |) is the absolute value of the determinant of H f . Since
vecH f = D⊗2 f , it is always possible to reconstruct the Hessian matrix ex-
actly from its vectorised form.

An important goal in exploratory data analysis is the identification of
data-rich regions, and these correspond to local modes in the density func-
tion. The quantity in Equation (5.4) thus focuses on local modes, rather than
other local extrema like anti-modes or saddle points.

Example 5.2 Figure 5.2(a)–(c) shows the partial density Hessian estimates
of the daily temperature data corresponding to f̂ (2,0), f̂ (0,2), f̂ (1,1), with
the plug-in bandwidth [1.44,1.42;1.42,2.46], with the analogous quasi-
probability contours and colour scale from Figure 5.1. The dark orange re-
gions f̂ (2,0), f̂ (0,2) in Figure 5.2(a)–(b) indicate large negative values of the
density curvature surrounded by purple regions with positive curvature, which
indicate that a local mode is located in the former. On the other hand, it is less
easy to interpret the mixed partial derivative f̂ (1,1) in Figure 5.2(c). As it is
also difficult to interpret all three partial density curvature plots simultane-
ously, the quasi-quartile contours of the summary curvature ŝ are displayed
in Figure 5.2(d). This allows for a clearer visualisation as the orange regions
surround local modes in the data density and are hence the high data density
regions. �

5.1.3 General density derivative estimators

Whilst the density gradient and Hessian are the most commonly used deriva-
tives of the density function, we have already encountered a number of sit-
uations where higher order derivatives of the density are required. For ex-
ample, in the asymptotic MISE expression in Equation (3.10) involves the
fourth order derivative, and the sixth and eighth order derivatives will ap-
pear in the 2-stage plug-in and smooth cross validation bandwidth selectors
in Sections 5.6.4–5.6.5.

A more thorough theoretical analysis of the general density derivative
estimators is deferred to Section 5.5, but one immediate difficulty in denoting
these estimators is the computation of the kernel estimator in Equation (5.1).

The normal kernel φ(xxx) = (2π)−d/2 exp(−1
2 xxx>xxx) is the most common

choice for density estimation in the multivariate context, and it enjoys further
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(a) (b)

(c) (d)

Figure 5.2 Density curvature estimates for the daily temperature data. The hori-
zontal axis is the daily minimum (◦C) and the vertical axis is the daily maximum
temperature (◦C). (a) Partial density Hessian estimate f̂ (2,0). (b) Partial density Hes-
sian estimate f̂ (0,2). (c) Partial density Hessian estimate f̂ (1,1). (d) Summary den-
sity curvature estimate ŝ. The quasi-quartile contours are purple for positive, or-
ange for negative values. The curvature estimates are computed with the bandwidth
[1.44,1.42;1.42,2.46].

advantages for density derivative estimation. Its first two derivatives are

Dφ(xxx) =−φ(xxx)xxx,

D⊗2
φ(xxx) = φ(xxx)(xxx⊗2−vecId).

More complicated expressions result for higher order derivatives, due to the
fact that Kronecker products are not commutative. Fortunately Holmquist
(1996a) showed that there exists a closed and compact formulation to express
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the derivatives of arbitrary order of the multivariate normal density function:

D⊗r
φΣΣΣ(xxx) = (−1)r(ΣΣΣ−1)⊗rHHHr(xxx;ΣΣΣ)φΣΣΣ(xxx)

where HHHr(xxx;ΣΣΣ) is the r-th order vector Hermite polynomial in xxx, given by

HHHr(xxx;ΣΣΣ) = r!SSSd,r

br/2c

∑
j=0

(−1) j

j!(r−2 j)!2 j

{
xxx⊗(r−2 j)⊗ (vecΣΣΣ)⊗ j} (5.5)

with bac denoting the greatest integer that is less than or equal to a. Here, an
important factor is the dr×dr symmetriser matrix SSSd,r, defined as

SSSd,r =
1
r!

d

∑
i1,i2,...,ir=1

∑
σ∈Pr

r⊗
`=1

eeei`eee
>
iσ(`)

(5.6)

with Pr denoting for the group of permutations of order r and eeei for the i-th
column of Id . The symmetriser matrix SSSd,r maps the product

⊗r
i=1 xxxi to an

equally weighted linear combination of products of all possible permutations
of xxx1, . . . ,xxxr. For instance, for r = 3 the action of this symmetriser matrix on
a 3-fold product results in

SSSd,3(xxx1⊗ xxx2⊗ xxx3) =
1
6(xxx1⊗ xxx2⊗ xxx3 + xxx1⊗ xxx3⊗ xxx2 + xxx2⊗ xxx1⊗ xxx3

+ xxx2⊗ xxx3⊗ xxx1 + xxx3⊗ xxx1⊗ xxx2 + xxx3⊗ xxx2⊗ xxx1).

Simple explicit expressions for this matrix only exist for r ≤ 2, e.g., SSSd,0 = 1,
SSSd,1 = Id and SSSd,2 = 1

2(Id2 +Kd,d), where Kd,d is the d2× d2 commutation
matrix (see Appendix B). Chacón & Duong (2015) derived efficient algo-
rithms to compute this symmetriser matrix and normal density derivatives
(the latter is explored in more detail in Section 8.3). With these algorithms at
hand, we are well-placed to compute D⊗r f̂ .

The symmetriser matrix is also involved in defining other quantities re-
lated to the normal distribution, which play a significant role in the analy-
sis of kernel smoothers for derivative estimation. For instance, for the 2r-th
moment of a standard normal random variable ZZZ, denoted as µµµ2r = E(ZZZ⊗2r),
Holmquist (1988) showed that an explicit formula in terms of the symmetriser
matrix is given by

µµµ2r = OF(2r)SSSd,2r(vecId)
⊗r (5.7)

where OF(2r) = (2r− 1)(2r− 3) · · ·5 · 3 · 1 = (2r)!/(r!2r) denotes the odd
factorial of an even number 2r.
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Moreover, we repeatedly make use of the expectation of products of
quadratic forms in normal random variables

νr(A; µµµ,ΣΣΣ) = E{(YYY>AYYY )r}
νr,s(A,B; µµµ,ΣΣΣ) = E{(YYY>AYYY )r(YYY>BYYY )s} (5.8)

where YYY ∼ N(µµµ,ΣΣΣ) and A, B are symmetric matrices. For a standard nor-
mal random variable we tend to omit the mean and variance and write
νr(A),νr,s(A,B) for brevity. Holmquist (1996b) showed that closed, explicit
formulas for these expectations can be expressed in terms of the symmetriser
matrix as

νr(A) = OF(2r)(vec>A)⊗rSSSd,2r(vecId)
⊗r

νr,s(A,B) = OF(2r+2s)
{
(vec>A)⊗r⊗ (vec>B)⊗s}SSSd,2r+2s(vecId)

⊗(r+s).
(5.9)

In addition to providing a compact notation for such moments, these ν func-
tionals play an important role in the efficient computation of bandwidth se-
lectors as outlined in Section 8.4.

5.2 Gains from unconstrained bandwidth matrices

To examine the effect of unconstrained bandwidth matrices on the estima-
tors of density derivatives, we return to the Grevillea data and the dumbbell
density.

Example 5.3 The quiver plots for the kernel gradient estimates of the Gre-
villea data with an unconstrained bandwidth [0.043,−0.028;−0.028,0.061]
is in Figure 5.3(a), and with a diagonal bandwidth diag(0.025,0.031) in Fig-
ure 5.3(b). The summary curvature plots for the kernel curvature estimates
with an unconstrained bandwidth [0.053,−0.036;−0.036,0.076] are shown
in Figure 5.3(c), and with a diagonal bandwidth diag(0.030,0.038) in Fig-
ure 5.3(d). With the unconstrained matrices, the oblique contours suggest a
directionality in the geographical distribution. �

Example 5.4 Regarding the dumbbell density, Figures 5.4(a)–(c) show the
quiver plots for the target density gradient, the kernel estimate with uncon-
strained bandwidth and the kernel estimate with diagonal bandwidth. The
unimodality of the target density is confirmed with the quiver plots for the
unconstrained bandwidth but not for the diagonal one. The gradient arrows
for the target density in Figure 5.4(a) fall away from the 45◦ line in the central
region, which is also the case in Figure 5.4(b), whereas in Figure 5.4(c), these
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(a) (b)

(c) (d)

Figure 5.3 Potential gains of an unconstrained over a diagonal bandwidth ma-
trix for the density derivatives of the Grevillea data. (a)–(b) Gradient quiver
plots. (c)–(d) Summary curvature plots with quasi-quartile contours. Kernel es-
timates with unconstrained bandwidths (a) [0.043,−0.028;−0.028,0.061], (c)
[0.053,−0.036;−0.036,0.076]. Kernel estimates with diagonal bandwidths (b)
diag(0.025,0.031), (d) diag(0.030,0.038).

arrows converge to two or three separate modes. The corresponding sum-
mary curvature plots are displayed in Figure 5.4(d)–(f). The unconstrained
bandwidth estimate reproduces fairly accurately the target contours, whilst
the contours for the diagonal bandwidth estimate are too circular in shape. �

To supplement these heuristic observations, we quantify the performance
gain in using an unconstrained matrix from class F with respect to a diagonal
matrix from class D, via the asymptotic relative efficiency (ARE)

ARE(F,D) =

[
minH∈F AMISE{D⊗r f̂ (·;H)}
minH∈D AMISE{D⊗r f̂ (·;H)}

](d+2r+4)/4
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(a) (b) (c)

(d) (e) (f)

Figure 5.4 Potential gains of an unconstrained over a diagonal bandwidth matrix for
the derivatives of the dumbbell density. (a)–(c) Gradient quiver plots. (d)–(f) Curva-
ture plots with quasi-quartile contours. (a),(d) Target dumbbell density derivatives.
(b),(e) Kernel estimates with unconstrained bandwidths. (c),(f) Kernel estimates with
diagonal bandwidths.

as introduced by Chacón et al. (2011). The ARE for comparing the F class to
the scalar A class follows analogously by suitably replacing the denominator.

Here, minH∈F AMISE{D⊗r f̂ (·;H)} denotes the minimal asymptotic
MISE achievable with a bandwidth matrix in class F (and analogously for
classes D and A). The MISE for density derivative estimators will be for-
mally defined in Section 5.5 as the equivalent of the MISE for the density
case. As 0 ≤ ARE(F,D) ≤ 1, low values (close to zero) of the ARE indi-
cate that the unconstrained matrix produces a much lower minimal AMISE
than a constrained matrix, so the former is strongly preferred; and high values
(close to one) of the ARE indicate that the unconstrained matrix produces a
similar minimal AMISE as the constrained matrix, so there is a only modest
gain in using the former. An alternative interpretation of the ARE(F,D) is
that, for large n, the minimal achievable error using diagonal matrices with
n observations can be replicated using only ARE(F,D)n observations with
unconstrained matrices.

Example 5.5 As the ARE does not have a closed form for a general den-
sity f , we numerically evaluate it for the special case of a bivariate normal
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density with variance matrix ΣΣΣ = [σ2
1 ,ρσ1σ2;ρσ1σ2,σ

2
2 ]. In Figure 5.5(a),

we have an isotropic variance σ1 = σ2 = 1. In this case, the ARE(F,D) and
ARE(F,A) coincide exactly as HAMISE,D = HAMISE,A whenever σ1 = σ2.
In Figure 5.5(b), we have anisotropic variance σ1 = 1,σ2 = 5. The set of
solid curves are the ARE(F,D) and of dashed curves are the ARE(F,A).
With these ARE curves, we can observe the evolution from when the coor-
dinate variables are perfectly linearly correlated (ρ = ±1) to when they are
perfectly uncorrelated (ρ = 0). All the ARE curves tend to 0 as |ρ| tends
to 1, indicating that for highly correlated data, the unconstrained matrix is
preferred. For a fixed r, the ARE(F,D)≥ ARE(F,A) uniformly, i.e., the di-
agonal matrix class D performs uniformly better than the scalar class A. As
r increases, the decrease in the ARE is steeper as |ρ| tends to 1, demonstrat-
ing that the gains in AMISE performance for unconstrained matrices can be
greater for r > 0 than for r = 0. The ARE(F,D) remain unchanged from Fig-
ure 5.5(a) to (b), as the diagonal matrix class handles anisotropy correctly,
whereas the ARE(F,A) in Figure 5.5(b) are rather flat curves with values
close to 0, implying that the scalar matrix class is inadequate for smoothing
data with highly different dispersions. �

(a) (b)

Figure 5.5 Asymptotic relative errors (ARE) for the derivatives of the density of
N((0,0), [σ2

1 ,ρσ1σ2;ρσ1σ2,σ
2
2 ]), as a function of the correlation coefficient ρ . The

horizontal axis is ρ , and the vertical axis is the ARE. (a) σ1 = 1,σ2 = 1. (b)
σ1 = 1,σ2 = 5. The solid curves are the ARE(F,D) and the dashed curves the
ARE(F,A). The colour changes from purple to grey as r increases from 0 to 4.
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5.3 Advice for practical bandwidth selection

In Section 2.4, we illustrated the density estimates resulting from different
bandwidth selectors. Given the earlier advice, the possible selectors are re-
duced to the most ‘promising’ ones: (a) normal scale, (b) unbiased cross vali-
dation, (c) plug-in and (d) smoothed cross validation. These will be exposited
in detail in Section 5.6, so we only mention them briefly here.

Example 5.6 For the Grevillea data, Figures 5.6–5.7 for the density gradient
and curvature estimates are the equivalents of Figure 2.11 for the density
estimates.

(a) NS (b) UCV

(c) PI (d) SCV

Figure 5.6 Different bandwidth selectors for the density gradient estimates of the
Grevillea data. Quiver plots. (a) Normal scale ĤNS,1. (b) Unbiased cross validation
ĤUCV,1. (c) Plug-in ĤPI,1. (d) Smoothed cross validation ĤSCV,1.

The normal scale selector is efficient to compute, and tends to produce
oversmoothed density estimates, so it is useful for a quick visualisation of the
overall trends in the data, but generally is not as accurate as the cross valida-
tion and the plug-in selectors. Unbiased cross validation, as it does not rely
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(a) NS (b) UCV

(c) PI (d) SCV

Figure 5.7 Different bandwidth selectors for the density curvature estimates of the
Grevillea data. Summary curvature plots. (a) Normal scale ĤNS,2. (b) Unbiased cross
validation ĤUCV,2. (c) Plug-in ĤPI,2. (d) Smoothed cross validation ĤSCV,2.

on asymptotic expansions, can be less biased than other selectors, though this
smaller bias tends to give a wider variability (see Section 3.8). This leads to
oversmoothed density derivative estimates for the Grevillea data, in contrast
to the undersmoothed density estimates in Figure 2.11. The wide variability
in the UCV selector is also well-documented in Chacón & Duong (2013). �

Example 5.7 We repeat this comparison of these different bandwidth selec-
tors for the stem cell data in Figure 5.8 for the summary curvature plots since
the quiver arrow plots are not currently available for 3-dimensional visuali-
sations. The normal scale ĤNS,2 and unbiased cross validation ĤUCV,2 yield
similar density estimates. The quartile contours for these three selectors are
ellipsoidal and evenly spaced, and tend to indicate oversmoothed estimates.
For the ĤPI,2 and smoothed cross validation ĤSCV,2 selectors, more details of
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the data structure are visible due to the irregularly shaped and spaced contours
shells, and that the upper left mode is more peaked. �

(a) NS (b) UCV

(c) PI (d) SCV

Figure 5.8 Different bandwidth selectors for the density curvature estimates of the
stem cell data. Summary curvature plots. (a) Normal scale ĤNS,2. (b) Unbiased cross
validation ĤUCV,2. (c) Plug-in ĤPI,2. (d) Smoothed cross validation ĤSCV,2.

The smoothed cross validation ĤSCV and plug-in ĤPI (and their slight
variants) are the most widely recommended bandwidth selectors, with a small
advantage to the latter as it is computationally more efficient. Whilst it is
inadvisable to base these general recommendations on the sole analysis of
the Grevillea and the stem cell data as presented here, they have been indeed
verified for a wider range of target density shapes (Chacón & Duong, 2013).

5.4 Empirical comparison of bandwidths of different derivative orders

We asserted earlier in Example 5.1 that the optimal bandwidths for density
derivative estimation are larger than those for density estimation. Even though
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we defer the definition of the latter until Section 5.6, we present here an em-
pirical comparison of the advantages of smoothing density derivatives with
these bandwidths rather than those developed for the density function.

Density #10 from Chacón (2009) is defined as the density of the
normal mixture 1

2 N((0,0),I2) +
1
10 N((0,0), 1

16 I2) +
1

10 N((−1,−1), 1
16 I2) +

1
10 N((−1,1), 1

16 I2)+
1
10 N((1,−1), 1

16 I2)+
1

10 N((1,1), 1
16 I2). It shows an in-

tricate multimodal structure that can be challenging to recover, and this is
perhaps even more so for its derivatives. The quartile contours of f are dis-
played in Figure 5.9(a) and the quasi-quartile contours of the second or-
der partial derivative f (0,2) in Figure 5.9(b). In Figure 5.9(c) is the estimate
f̂ (0,2)(·;ĤPI) with a representative data sample and with the plug-in selector
ĤPI = [0.037,0.001;0.001,0.039] which is optimal for the density. In Fig-
ure 5.9(d) is the estimate f̂ (0,2)(·;ĤPI,2) with the plug-in selector which is
optimal for the density Hessian ĤPI,2 = [0.054,0.001;0.001,0.057]. An in-
spection of the ĤPI and ĤPI,2 reveals that the latter contains larger terms on
the main diagonal, which lead to the estimate with ĤPI,2 having smoother
contours which more closely resemble the target contours than that with ĤPI.

5.5 Squared error analysis

The mean squared error and its related error measures can be developed analo-
gously to those for the density estimator f̂ . The MSE of the density derivative
estimator admits the variance plus squared bias decomposition

MSE{D⊗r f̂ (xxx;H)}= E
{
‖D⊗r f̂ (xxx;H)−D⊗r f (xxx)‖2}

= trVar{D⊗r f̂ (xxx;H)} + ‖Bias{D⊗r f̂ (xxx;H)}‖2,

where ‖vvv‖2 denotes the squared norm of a vector vvv and trA denotes
the trace of a square matrix A. We employ the usual convention that
the MSE is always a scalar whereas the expected value of a ran-
dom d-vector is a d-vector and its variance is a d × d matrix. This
implies that Bias{D⊗r f̂ (xxx;H)} = E{D⊗r f̂ (xxx;H)} − D⊗r f (xxx) ∈ Rdr

and
that Var{D⊗r f̂ (xxx;H)} = E

{
[D⊗r f̂ (xxx;H) − E{D⊗r f̂ (xxx;H)}][D⊗r f̂ (xxx;H) −

E{D⊗r f̂ (xxx;H)}]>
}
∈Mdr×dr .

Given sufficient regularity, we obtain the MISE as

MISE{D⊗r f̂ (·;H)}= E
∫
Rd
‖D⊗r f̂ (xxx;H)−D⊗r f (xxx)‖2 dxxx.

The variance-squared bias decomposition of the MSE now leads to a decom-
position of the MISE into the IV and ISB, namely

MISE{D⊗r f̂ (·;H)}= IV{D⊗r f̂ (·;H)}+ ISB{D⊗r f̂ (·;H)}
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(a) (b)

(c) (d)

Figure 5.9 Plug-in selectors of different derivative orders for the fountain den-
sity #10 data. (a) Target density f . (a) Target second order partial density deriva-
tive f (0,2). (c) Partial derivative estimate f̂ (0,2)(·;ĤPI) with plug-in bandwidth ĤPI =
[0.037,0.001;0.001,0.039]. (d) Partial derivative estimate f̂ (0,2)(·;ĤPI,2) with plug-
in bandwidth ĤPI,2 = [0.054,0.001;0.001,0.057].

where

IV{D⊗r f̂ (·;H)}=
∫
Rd

trVar{D⊗r f̂ (xxx;H)}dxxx,

ISB{D⊗r f̂ (·;H)}=
∫
Rd
‖Bias{D⊗r f̂ (xxx;H)}‖2 dxxx.

The MISE is a non-stochastic quantity that describes the performance of
the kernel estimator with respect to a typical sample drawn from f . In
contrast, the integrated squared error ISE{D⊗r f̂ (·;H)} =

∫
Rd‖D⊗r f̂ (xxx;H)−

D⊗r f (xxx)‖2 dxxx is a stochastic discrepancy measure depending on the data at
hand.
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The expected value and the variance of the kernel density derivative esti-
mator can be written in convolution form as

E{D⊗r f̂ (xxx;H)}= (KH ∗D⊗r f )(xxx)

Var{D⊗r f̂ (xxx;H)}= n−1{[{(D⊗rKH)(D
⊗rKH)

>}∗ f ](xxx)

− (KH ∗D⊗r f )(xxx)(KH ∗D⊗r f )(xxx)>} (5.10)

(Chacón et al., 2011, Theorem 4), where convolutions with vector-valued
functions are applied in a component-wise manner. Combining the two for-
mulas in Equation (5.10) we obtain a more explicit formula for the MSE

MSE{D⊗r f̂ (xxx;H)}= n−1{(‖D⊗rKH‖2∗ f )(xxx)−‖(KH ∗D⊗r f )(xxx)‖2}
+‖(KH ∗D⊗r f )(xxx)−D⊗r f (xxx)‖2.

Integrating over xxx, it follows that

MISE{D⊗r f̂ (·;H)}
=
{

n−1|H|−1/2 tr((H−1)⊗rR(D⊗rK))−n−1 trR∗(KH ∗KH,D
⊗r f )

}
+
{

trR∗(KH ∗KH,D
⊗r f )−2trR∗(KH,D

⊗r f )+ trR(D⊗r f )
}
(5.11)

where R(aaa) =
∫
Rd aaa(xxx)aaa(xxx)> dxxx and R∗(b,aaa) =

∫
Rd b∗aaa(xxx)aaa(xxx)> dxxx for suit-

able functions aaa : Rd → Rp and b : Rd → R. The first set of braces in Equa-
tion (5.11) contains the expression for the IV, the second the ISB.

To demonstrate the effect of the bandwidth more apparently, it is useful
to derive an asymptotic MISE formula, which satisfies MISE{D⊗r f̂ (·;H)}=
AMISE{D⊗r f̂ (·;H)}{1 + o(1)}. Since the density derivatives are vector-
valued functions, the main mathematical tool required to obtain the desired
asymptotic approximation in this case is Taylor’s theorem for vector-valued
functions. First it is necessary to clarify the notion of a derivative that we
employ for a vector-valued function. If fff : Rd → Rp is a vector-valued func-
tion of a vector variable, with components fff = ( f1, . . . , fp), then we define
D⊗r fff (xxx) ∈ Rpdr

to be

D⊗r fff (xxx) =

 D⊗r f1(xxx)
...

D⊗r fp(xxx)

 .
Observe that, using this notation, we have D(D⊗r f ) = D⊗(r+1) f due to the
formal algebraic properties of the Kronecker product. Then, our version of
Taylor’s theorem reads as follows.
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Theorem 5 Let fff :Rd→Rp be an r-times continuously differentiable vector-
valued function. For xxx,aaa ∈ Rd , the Taylor expansion of fff at a point xxx+aaa for
a small perturbation aaa is

fff (xxx+aaa) =
r

∑
j=0

1
j!
{Ip⊗ (aaa>)⊗ j}D⊗ j fff (xxx)+Re(aaa).

The remainder Re(aaa) is a vector whose norm is o(‖aaa‖r).

Since this is a nonstandard formulation of Taylor’s theorem, its proof is
given in Section 5.9. In order to use Taylor expansions to find an asymptotic
expression for the MISE we are required to make the following assumptions:

Conditions B
(B1) The density derivative function D⊗r f is square integrable and D⊗(r+2) f

exists, with all of its (r+2)-th order partial derivatives bounded, continu-
ous and square integrable.

(B2) The kernel K is spherically symmetric and with finite second order mo-
ment i.e.,

∫
Rd zzzK(zzz)dzzz = 0 and that

∫
Rd zzz⊗2K(zzz)dzzz = m2(K)vecId with

m2(K) =
∫
Rd z2

i K(zzz)dzzz for all i = 1, . . . ,d; and all of its partial derivatives
up to order r are square integrable.

(B3) The bandwidth matrices H = Hn form a sequence of positive definite,
symmetric matrices such that vecH→ 0 and n−1|H|−1/2 vec((H−1)⊗r)→ 0
as n→ ∞.

We begin by developing an asymptotic form for the bias. After a change
of variables, the expected value of D⊗r f̂ (xxx;H) can be written as

E{D⊗r f̂ (xxx;H)}=
∫
Rd

KH(xxx− yyy)D⊗r f (yyy)dyyy =
∫
Rd

K(zzz)D⊗r f (xxx−H1/2zzz)dzzz.

(5.12)

By applying Theorem 5 we obtain

D⊗r f (xxx−H1/2zzz) = D⊗r f (xxx)−{Idr ⊗ (zzz>H1/2)}D⊗(r+1) f (xxx)

+ 1
2{Idr ⊗ (zzz>H1/2)⊗2}D⊗(r+2) f (xxx)+o(‖vecH‖)111dr

where 111dr denotes the vector in Rdr
with one as all of its elements. Taking into

account condition (B2) on K, substituting the expansion of D⊗r f (xxx−H1/2zzz)
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into Equation (5.12) yields

E{D⊗r f̂ (xxx;H)}
= D⊗r f (xxx)+ 1

2 [Idr ⊗{m2(K)(vec> Id)(H1/2)⊗2}]D⊗(r+2) f (xxx)

+o(‖vecH‖)111dr

= D⊗r f (xxx)+ 1
2 m2(K)(Idr ⊗vec>H)D⊗(r+2) f (xxx)+o(‖vecH‖)111dr .

From this, squaring and integrating with respect to xxx we obtain

ISB{D⊗r f̂ (·;H)}= 1
4 m2(K)2 tr

{
(Idr ⊗vec>H)R(D⊗(r+2) f )(Idr ⊗vecH)

}
+o(‖vecH‖2). (5.13)

Alternative forms for the trace in the dominant term are

tr
{
(Idr ⊗vec>H)R(D⊗(r+2) f )(Idr ⊗vecH)

}
= tr

[
{Idr ⊗ (vecHvec>H)}R(D⊗(r+2) f )

]
=
{

vec>R(D⊗(r+2) f )
}{

vecIdr ⊗ (vecH)⊗2}.
Regarding the IV, starting from Equation (5.10) and integrating with re-

spect to xxx we have, for the first term,

n−1 tr
∫
Rd
[{(D⊗rKH)(D

⊗rKH)
>}∗ f ](xxx)dxxx

= n−1 tr
∫
Rd

∫
Rd

D⊗rKH(xxx− yyy)D⊗rKH(xxx− yyy)> f (yyy)dyyydxxx

= n−1|H|−1/2 tr
∫
Rd

∫
Rd
(H−1/2)⊗rD⊗rK(zzz)D⊗rK(zzz)>(H−1/2)⊗r

× f (xxx−H1/2zzz)dzzzdxxx

= n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
. (5.14)

For the second term in Equation (5.10) we can reuse the calculations for
E{D⊗r f̂ (xxx;H)} to obtain n−1 tr

∫
Rd (KH ∗D⊗r f )(xxx)(KH ∗ (D⊗r f )>)(xxx)dxxx =

n−1 trR(D⊗r f )+ o(n−1), so that this second term in the IV is of a smaller
order than the first one. Therefore,

IV{ f̂ (·;H)}= n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
+o(n−1|H|−1/2‖vecH−1‖r). (5.15)

Combining Equations (5.13)–(5.15), it follows that an asymptotic approxima-
tion to the MISE can be written as

AMISE{D⊗r f̂ (·;H)}= n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
+ 1

4 m2(K)2 tr
{
(Idr ⊗vec>H)R(D⊗(r+2) f )(Idr ⊗vecH)

}
. (5.16)



108 DENSITY DERIVATIVE ESTIMATION

Examining Equation (5.16), if the bandwidth has small entries, the bias tends
to be small as well whilst the variance is inflated. If the bandwidth is large, in
the sense of having a large determinant, the bias tends also to be large with a
correspondingly diminishing variance.

We note that the leading term n−1|H|−1/2 tr{(H−1)⊗rR(D⊗rK)} of the IV
is virtually indistinguishable asymptotically from its exact form for any den-
sity f . Thus there is no effect on bandwidth selection, at least in an asymp-
totic sense, in changing the exact variance for its leading term. Whereas the
accuracy of the asymptotic ISB depends highly on the structure of f . Finally,
observe that if we impose the condition (B3) on the bandwidth sequence we
obtain that AMISE{D⊗r f̂ (·;H)} → 0. That is, the kernel density derivative
estimator is consistent for the target density derivative as n→ ∞. Thus D⊗r f̂
is asymptotically unbiased and consistent, which assures that, at least in the
limiting case, kernel estimators perform well.

From an asymptotic point of view, the optimal bandwidth is HAMISE,r =
argminH∈F{AMISE{D⊗r f̂ (·;H)}. Under the assumptions (B1)–(B3) in
Conditions B, by balancing the terms of order n−1|H|−1/2 tr((H−1)⊗r)
and ‖vecH‖2 which comprise the AMISE, this leads to that HAMISE,r
is of order n−2/(d+2r+4). This implies that the minimal MISE rate is
infH∈F MISE{D⊗r f̂ (·;H)} = O(n−4/(d+2r+4)). This rate is uniformly slower
than the parametric rate O(n−1) for all d, implying that non-parametric ker-
nel estimation is a more difficult problem than its parametric counterpart. This
O(n−4/(d+2r+4)) rate also implies that as the dimension d and the derivative
order r increase, kernel estimation becomes increasingly difficult: a unit in-
crease in the derivative order leads to a difficulty that is asymptotically equiv-
alent to a two-fold unit increase in the dimension d.

5.6 Bandwidth selection for density derivative estimators

The oracle optimal bandwidth is the minimiser of the MISE, HMISE,r =
argminH∈F MISE{D⊗r f̂ (·;H)}. As noted above, the simpler proxy HAMISE,r
can be equally considered an asymptotic oracle bandwidth. As they require
knowledge of the target density derivative D⊗r f to be computed, the usual ap-
proach is to estimate the (A)MISE from the data to get a data-based criterion
̂(A)MISE whose minimiser yields a data-based bandwidth selector, denoted

as Ĥr = argminH∈F
̂(A)MISE{D⊗r f̂ (·;H)}.
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5.6.1 Normal scale bandwidths

To obtain a normal scale selector, the unknown target density f is replaced
by a normal density with mean µµµ and variance ΣΣΣ in the error formulas, and
the kernel K is taken to be the normal kernel. Due to the neat mathematical
properties of normal densities, the MISE and AMISE of D⊗r f̂ become

MISENS{D⊗r f̂ (·;H)}= 2−r(4π)−d/2{n−1|H|−1/2
νr(H−1)

+(1−n−1)|H+ΣΣΣ|−1/2
νr((H+ΣΣΣ)−1)

−2(d+2r+2)/2|H+2ΣΣΣ|−1/2
νr((H+2ΣΣΣ)−1)+ |ΣΣΣ|−1/2

νr(ΣΣΣ
−1)
}

AMISENS{D⊗r f̂ (·;H)}= 2−r(4π)−d/2{n−1|H|−1/2
νr(H−1)

+ 1
16 |ΣΣΣ|

−1/2
νr,2(ΣΣΣ

−1,ΣΣΣ−1/2HΣΣΣ
−1/2)

}
,

as shown in Section 5.8, and where νr and νr,2 refer to the functionals related
to quadratic forms in normal variables introduced in Equations (5.8)–(5.9).

There is no explicit formula for the minimiser of MISENS, whereas the
minimiser of the AMISENS is given by

HNS,r = {4/(d +2r+2)}2/(d+2r+4)n−2/(d+2r+4)
ΣΣΣ (5.17)

from Chacón et al. (2011). If we replace the population variance ΣΣΣ with an
estimator, usually the sample variance S, then we obtain a data-based, normal
scale bandwidth

ĤNS,r = {4/(d +2r+2)}2/(d+2r+4)n−2/(d+2r+4)S. (5.18)

As the normal density is amongst the smoothest densities available, the nor-
mal scale selector tends to yield bandwidths which lead to oversmoothing for
non-normal data.

As for the case of the density, it can be useful to have explicit forms for
the constrained minimizers of AMISENS{D⊗r f̂ (·;H)}. Within class A, it is
shown in Section 5.8 that the bandwidth that minimizes the AMISE can be
written as h2

NS,rId with

hNS,r =
{

4νr+1(Id)|ΣΣΣ|1/2/νr+2(ΣΣΣ
−1)
}1/(d+2r+4)n−1/(d+2r+4). (5.19)

From the definition of the νr functionals it follows that νr+1(Id) is the
(r+ 1)-th raw moment of the chi-squared distribution, and its explicit form
is νr+1(Id) = 2r+1Γ(r+1+d/2)/Γ(d/2) = ∏

r
j=0(d+2 j), see Johnson et al.

(1994, Chapter 18). On the other hand, an explicit formula for νr+2(ΣΣΣ
−1) is
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given in Equation (5.9), and computationally efficient ways to obtain it will
be provided in Section 8.4. For the most common cases r = 0,1,2 the re-
quired quantities are ν2(ΣΣΣ

−1) = 2tr(ΣΣΣ−2)+ tr2(ΣΣΣ−1), ν3(ΣΣΣ
−1) = 8tr(ΣΣΣ−3)+

6tr(ΣΣΣ−2) tr(ΣΣΣ)+ tr3(ΣΣΣ−1), and ν4(ΣΣΣ
−1) = 48tr(ΣΣΣ−4)+ 32tr(ΣΣΣ−3) tr(ΣΣΣ−1)+

12tr(ΣΣΣ−2) tr2(ΣΣΣ−1)+12tr2(ΣΣΣ−2)+ tr4(ΣΣΣ−1).
The problem of finding an explicit formula for the optimal diagonal band-

width in the normal case remains open, although by comparison with the
bandwidth Equation (3.4) for r = 0, there is numerical evidence that the diag-
onal bandwidth whose i-th diagonal entry is the square of

hNS,r,i =
{

4νr+1(Id)|∆∆∆|1/2/νr+2(∆∆∆
−1)
}1/(d+2r+4)

σin−1/(d+2r+4) (5.20)

provides a reasonable approximation, where σ2
i denotes the variance of the

i-th coordinate, and ∆∆∆ = (diagΣΣΣ)−1ΣΣΣ with diagΣΣΣ = diag(σ2
1 , . . . ,σ

2
d ).

5.6.2 Normal mixture bandwidths

The normal scale selector can be extended to a more general case of a normal
mixture ∑

q
`=1 w`φΣΣΣ`

(·−µµµ`). The corresponding MISE and AMISE formulas,
from Theorems 7–8 in Chacón et al. (2011), are

MISENM{D⊗r f̂ (·;H)}= 2−r(4π)−d/2n−1|H|−1/2
νr(H−1)

+www>[(1−n−1)ΩΩΩr,2−2ΩΩΩr,1 +ΩΩΩr,0]www

AMISENM{D⊗r f̂ (·;H)}= 2−r(4π)−d/2n−1|H|−1/2
νr(H−1)+ 1

4 www>ΞΞΞrwww

where ΩΩΩr,a and ΞΞΞr are q× q matrices whose (`,`′)-th entries are given, re-
spectively, by

[ΩΩΩr,a]`,`′ = (−1)r(vec> Idr)D⊗2r
φaH+ΣΣΣ`+ΣΣΣ`′

(µµµ`−µµµ`′),

[ΞΞΞr]`,`′ = (−1)r vec>[Idr ⊗ (vecHvec>H)]D⊗2r+4
φΣΣΣ`+ΣΣΣ`′

(µµµ`−µµµ`′).

These authors also showed that these expressions for r = 0 reduce to those
introduced in Section 3.3. With this closed form AMISE expression, it is pos-
sible to develop a normal mixture selector as:

NMr(H) = 2−rn−1(4π)−d/2|H|−1/2
νr(H−1)+ 1

4 ŵww>Ξ̂ΞΞrŵww

and thus ĤNM,r = argminH∈F NMr(H). The NM selector has a straightfor-
ward implementation in Algorithm 6.
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Algorithm 6 Normal mixture bandwidth selector for density derivative esti-
mation

Input: {XXX1, . . . ,XXXn}
Output: ĤNM

1: Fit a normal mixture model with q̂ components to the data
2: ĤNM,r := minimiser of NMr(H)

5.6.3 Unbiased cross validation bandwidths

The basis of unbiased cross validation is the formula for the integrated
squared error. For r = 0, the ISE can be expanded as ISE{ f̂ (·;H)} =∫
Rd f̂ (xxx;H)2dxxx− 2E{ f̂ (XXX ;H)|XXX1, . . . ,XXXn}+R( f ) where XXX ∼ f . For r ≥ 0,

the equivalent expansion is

ISE{D⊗r f̂ (·;H)}= (−1)r(vec> Idr)
[
n−2

n

∑
i, j=1

D⊗2rKH ∗KH(XXX i−XXX j)

−2E{D⊗2r f̂ (XXX ;H)|XXX1, . . . ,XXXn}
]
+ trR(D⊗r f ).

Leaving out the third term as it does not involve the bandwidth, and not-
ing that an estimator of the conditional expectation is n−1

∑
n
i=1D

⊗2r f̂H,−i(XXX i)
where D⊗2r f̂H,−i denotes the kernel estimator based on the sample with the
i-th observation deleted, this leads to the UCV criterion (Chacón & Duong,
2013)

UCVr(H) = (−1)r(vec> Idr)
[
n−2

n

∑
i, j=1

D⊗2rKH ∗KH(XXX i−XXX j)

−2{n(n−1)}−1
n

∑
i, j=1

j 6=i

D⊗2rKH(XXX i−XXX j)
]

as the second summation is equal to n−1
∑

n
i=1D

⊗2r f̂H,−i(XXX i). Extracting the
terms in the first double sum with an identically zero argument, we have

UCVr(H) = n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
+(−1)r{n(n−1)}−1(vec> Idr)

×
n

∑
i, j=1

j 6=i

{
(1−n−1)D⊗2rKH ∗KH−2D⊗2rKH

}
(XXX i−XXX j). (5.21)
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From this, ĤUCV,r = argminH∈F UCVr(H). Examining Equation (5.21), the
expected value of the UCV criterion is

E{UCVr(H)}= n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)}+ trR∗(KH ∗KH,D

⊗r f )

−2trR∗(KH,D
⊗r f )

= MISE{ f̂ (·;H)}− trR(D⊗r f )

from Equation (5.11). Hence the UCV is an unbiased estimator of the MISE,
ignoring the trR(D⊗r f ) constant which does not involve the bandwidth.

If the normal kernel K = φ is used, then the UCV can be rewritten in a
more computationally efficient form:

UCVr(H) = (−1)r
{

n−2
n

∑
i, j=1

η2r(XXX i−XXX j;2H)

−2[n(n−1)]−1
n

∑
i, j=1

j 6=i

η2r(XXX i−XXX j;H)
}

(5.22)

where η2r(xxx;ΣΣΣ) = (vec> Id)
⊗rD⊗2rφΣΣΣ(xxx) as introduced by Chacón & Duong

(2015). The reasons why these η functionals allow for more efficient compu-
tation are detailed in Section 8.4.

The UCV selector has a straightforward implementation in Algorithm 7,
which contains only one step for the numerical minimisation of the UCV
criterion.

Algorithm 7 UCV bandwidth selector for density derivative estimation
Input: {XXX1, . . . ,XXXn},r
Output: ĤUCV,r

1: ĤUCV,r := minimiser of UCVr(H)

5.6.4 Plug-in bandwidths

We can rewrite the AMISE formula in Equation (5.16) as

AMISEr(H) = n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
+(−1)r 1

4 m2(K)2
ψψψ
>
2r+4{vecIdr ⊗ (vecH)⊗2} (5.23)

where we recall from Section 3.6 that ψψψ2r+4 corresponds to the case s = r+2
of the functional

ψψψ2s = (−1)s vecR(D⊗s f ) =
∫
Rd

D⊗2s f (xxx) f (xxx)dxxx,
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whose estimator had been denoted in Equation (3.11) as ψ̂ψψ2s ≡ ψ̂ψψ2s(G) for a
pilot bandwidth G. This leads immediately to the plug-in criterion

PIr(H;G) = n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
+(−1)r 1

4 m2(K)2
ψ̂ψψ2r+4(G)>{vecIdr ⊗ (vecH)⊗2} (5.24)

as introduced by Chacón & Duong (2013). The resulting plug-in selector is
ĤPI,r = argminH∈F PIr(H;G).

If the normal kernels K = L = φ are used, then the plug-in criterion can
be rewritten in a more computationally efficient form:

PIr(H;G) = 2−r(4π)−d/2n−1|H|−1/2
νr(H−1)

+(−1)r(2n)−2
n

∑
i, j=1

ηr,2(XXX i−XXX j;H,G)

where ηr,s(xxx;A,ΣΣΣ) = [(vec> Id)
⊗r⊗ (vec>A)⊗s]D⊗2r+2sφΣΣΣ(xxx).

As the use of a pilot bandwidth G is the key for good performance for
the class of plug-in selectors, we set up an analogous optimality criterion for
selecting G as

MSE(ĤPI,r) = E
{
‖vec(ĤPI,r−HAMISE,r)‖2}

= const ·MSE{ψ̂ψψ2r+4(G)}{1+o(1)} (5.25)

where the constant does not involve G or the data, and so can be ignored when
optimising the MSE(ĤPI,r) with respect to G. The leading asymptotic term of
the MSE{ψ̂ψψ2r+4(G)} is

AMSE{ψ̂ψψ2r+4(G)}= ‖n−1|G|−1/2(G−1/2)⊗2r+4D⊗2r+4L(000)

+ 1
2 m2(L)(vec>G⊗ Id2r+4)ψψψ2r+6‖2 (5.26)

as developed by Chacón & Duong (2010, Theorem 1).
The asymptotically optimal G is the minimiser of this AMSE in Equa-

tion (5.26). As it contains the unknown quantity ψψψ2r+6, we construct
an estimate ÂMSE{ψ̂ψψ2r+4(G)} of the AMSE by replacing ψψψ2r+6 with
ψ̂ψψ2r+6(GNS,2r+6), where this time we use a normal scale pilot bandwidth
ĜNS,2r+6 = {2/(d + 2r + 6)}2/(d+2r+8)2Sn−2/(d+2r+8) rather than another
stage of numerical optimisation, see Chacón & Duong (2010, Equation (8))
and also Section 5.8.5 below.

This insensitivity of the pilot bandwidth to an imprecise estimation can
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be extended to afford a further reduction in complexity without overly com-
promising the accuracy of f̂ by using the scalar bandwidth class G ∈ A, as
there is an analytic expression for the minimiser of ÂMSE{ψ̂ψψ2r+4(g

2Id)},

ĝ2r+4 = [2A1/{−A2 +(A2
2 +4A1A3)

1/2}]1/(d+2r+6)n−1/(d+2r+6) (5.27)

where the constants are A1 = (2d + 4r + 8)‖D⊗2r+4L(000)‖2,A2 = (d + 2r +
2)m2(L)[vecId ⊗D⊗2r+4L(000)]>ψ̂ψψ2r+6(ĝ

2
NS,2r+6Id),A3 = m2(L)2‖(vec> Id ⊗

Id2r+4)ψ̂ψψ2r+6(ĝ
2
NS,2r+6Id)‖2. The normal scale scalar pilot is

ĝNS,2r+6 = [2B1/{−B2 +(B2
2 +4B1B3)

1/2}]1/(d+2r+8)n−1/(d+2r+8)

where B1 = 2(2π)−dOF(2r+6)∏
r+3
j=0(d+2 j),B2 =−(d+2r+4)2−d/2−r+2×

(2π)−dOF(2r + 6)|S|−1/2νr+4(S−1), and B3 = ψ̂ψψ
>
NS,2r+8(vecId vec> Id ⊗

Id2r+6)ψ̂ψψNS,2r+8. A pilot bandwidth of class A is sufficient for most cases if
the data are pre-scaled to have the same marginal variance, though for cases
where unconstrained pilots of class F are more appropriate, see Chacón &
Duong (2010).

This 2-stage plug-in selector is given in Algorithm 8, with the option in
steps 1 and 3 of an unconstrained or a scalar pilot. The result is ĤPI,r which
is a generalisation of ĤPI.

Algorithm 8 Two-stage plug-in bandwidth selector for density derivative es-
timation

Input: {XXX1, . . . ,XXXn},r
Output: ĤPI,r

1: Compute the (2r+6)-th order normal scale pilot bandwidth
(a) Unconstrained pilot Ĝ2r+6 := ĜNS,2r+6
(b) Scalar pilot Ĝ2r+6 := ĝ2

NS,2r+6Id

2: Compute the (2r+6)-th order kernel functional estimate ψ̂ψψ2r+6(Ĝ2r+6)
/* Stage 1 */

3: Plug ψ̂ψψ2r+6(Ĝ2r+6) into the formula for the pilot bandwidth Ĝ2r+4

(a) Unconstrained pilot Ĝ2r+4 := minimiser of ÂMSE{ψ̂ψψ2r+4(G)}
(b) Scalar pilot Ĝ2r+4 := ĝ2

2r+4Id

4: Compute the (2r+4)-th order kernel functional estimate ψ̂ψψ2r+4(Ĝ2r+4)
/* Stage 2 */

5: ĤPI,r := minimiser of PIr(H;Ĝ2r+4)



5.6. BANDWIDTH SELECTION 115

5.6.5 Smoothed cross validation bandwidths

Instead of estimating the asymptotic ISB, the smoothed cross validation cri-
terion aims to estimate the exact ISB by replacing the true density f by a pilot
kernel density estimator f̃ (xxx;G) to obtain

ÎSBr(H;G) =
∫
Rd
‖{KH ∗D⊗r f̃ (·;G)}(xxx)−D⊗r f̃ (xxx;G)‖2 dxxx

= (−1)rn−2(vec> Idr)
n

∑
i, j=1

(K̄H−2KH +K0)∗D⊗2rL̄G(XXX i−XXX j),

where K̄ = K ∗K, L̄ = L∗L and K0 denotes the Dirac delta function. Adding
the dominant term of the IV to this yields

SCVr(H;G) = n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
+(−1)rn−2(vec> Idr)

n

∑
i, j=1

(K̄H−2KH +K0)∗D⊗2rL̄G(XXX i−XXX j)

(5.28)

as the SCV estimator of the (A)MISE. Then, the SCV selector is ĤSCV,r =
argminH∈F SCVr(H;G).

In contrast to the plug-in estimator of the AMISE in Equation (5.24),
the integrated density functional ψψψ2r+4 is not required be estimated in Equa-
tion (5.28), with the trade-off of the more computationally intensive dou-
ble sums. If there are no duplicates in the data XXX1, . . . ,XXXn, then the un-
biased cross validation is a special case of the smoothed cross validation
as SCVr(H;000) ≡ UCVr(H), i.e., the SCV pre-smooths the data differences
XXX i−XXX j by L̄G.

If, instead of using the dominant term of the IV, the exact IV is employed,
the resulting estimate of the MISE is

BMISEr(H;G) = n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
+(−1)rn−2(vec> Idr)

×
n

∑
i, j=1
{(1−n−1)K̄H−2KH +K0)}∗D⊗2rL̄G(XXX i−XXX j).

The only difference with the SCV in Equation (5.28) is the 1−n−1 factor in
the first term of the double sum, hence they are asymptotically equivalent.

If normal kernels K = L= φ are used, then the SCV has a computationally



116 DENSITY DERIVATIVE ESTIMATION

efficient form in Equation (5.29):

SCVr(H) = 2−r(4π)−d/2n−1|H|−1/2
νr(H−1)

+(−1)rn−2
n

∑
i, j=1

{
ηr(XXX i−XXX j;2H+2G)

−2ηr(XXX i−XXX j;H+2G)+ηr(XXX i−XXX j;2G)
}
. (5.29)

The analogous pilot bandwidth selection problem for the SCV is
slightly different from the PI selector. We begin with the MSE(ĤSCV,r) =
E
{
‖vec(ĤSCV,r−HMISE,r)‖2

}
which has the leading term AMSE(ĤSCV,r) =

const ·AMSE∗{ψ̂ψψ2r+4(G)} where the constant does not involve G, and

AMSE∗{ψ̂ψψ2r+4(G)}= ‖n−1|G|−1/2(G−1/2)⊗2r+4D⊗2r+4L̄(000)

+ 1
2 m2(L̄)(vec>G⊗ Id2r+4)ψψψ2r+6‖2 (5.30)

which is the AMSE{ψ̂ψψ2r+4(G)} in Equation (5.26) except that the con-
volved kernel L̄ rather than L is used. Whilst no explicit computation of
ψ̂ψψ2r+4(G) is required for the SCV, we are still required to compute the cor-
responding matrix Ĝ2r+4. As for the PI bandwidth, for a 2-stage SCV selec-
tor this Ĝ2r+4 is obtained by minimising ÂMSE∗{ψ̂ψψ2r+4(G)}, which is an
estimate of the AMSE∗ constructed by replacing ψψψ2r+6 in the AMSE∗ for-
mula with a kernel estimate ψ̂ψψ2r+6(Ĝ∗NS,2r+6) using a normal scale bandwidth
Ĝ∗NS,2r+6 = {2/(d+2r+6)}2/(d+2r+8)Sn−2/(d+2r+8) rather than another stage
of numerical optimisation, see Section 5.8.5.

Proceeding as for the PI selector, a similar scalar pilot bandwidth may be
derived. The scalar minimiser of ÂMSE∗{ψ̂ψψ2r+2s(g

2Id)} is

ĝ∗2r+4 = [2A1/{−A2 +(A2
2 +4A1A3)

1/2}1/(d+2r+8)n−1/(d+2r+8) (5.31)

where the constants are A1 = (2d + 4r + 8)‖D⊗2r+4L̄(000)‖2,A2 = (d + 2r +
2)m2(L̄)[vecId ⊗D⊗2r+4L̄(000)]>ψ̂ψψ2r+6(ĝ

∗2
NS,2r+6Id),A3 = m2(L̄)2‖(vec> Id ⊗

Id2r+4)ψ̂ψψ2r+6(ĝ
∗2
NS,2r+6Id)‖2. The normal scale scalar pilot is

ĝ∗NS,2r+6 = {2B1/[−B2 +(B2
2 +4B1B3)

1/2]}1/(d+2r+8)n−1/(d+2r+8)

where B1 = 2−2r−5(4π)−dOF(2r + 6)∏
r+3
j=0(d + 2 j),B2 = −(d + 2r + 4)×

2−2r−6(4π)−dOF(2r + 6)|S|−1/2νr+4(S−1),B3 = 4ψ̂ψψ
>
NS,2r+8(vecId vec> Id ⊗

Id2r+6)ψ̂ψψNS,2r+8.
The 2-stage SCV selector is given in Algorithm 9, with the option in steps

1 and 3 to use unconstrained or scalar pilots. The result is ĤSCV,r which is a
generalisation of ĤSCV.
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Algorithm 9 Two-stage SCV bandwidth selector for density derivative esti-
mation

Input: {XXX1, . . . ,XXXn},r
Output: ĤSCV,r

1: Compute (2r+6)-th order normal scale pilot bandwidth
(a) Unconstrained pilot Ĝ2r+6 := Ĝ∗NS,2r+6

(b) Scalar pilot Ĝ2r+6 := ĝ∗2NS,2r+6Id

2: Compute (2r+6)-th order kernel functional estimate ψ̂ψψ2r+6(Ĝ2r+6)
/* Stage 1 */

3: Plug ψ̂ψψ2r+6(Ĝ2r+6) into formula for pilot bandwidth Ĝ2r+4

(a) Unconstrained pilot Ĝ2r+4 := minimiser of ÂMSE∗{ψ̂ψψ2r+4(G)}
(b) Scalar pilot Ĝ2r+4 := ĝ∗22r+4Id

4: HSCV,r := minimiser of SCVr(H;Ĝ2r+4) /* Stage 2 */

5.7 Relative convergence rates of bandwidth selectors

Whilst we do not have in general explicit expressions for the unconstrained
data-based selectors, or even the oracle (A)MISE selectors, we are able to
establish that all these selectors are of order n−2/(d+2r+4). Analogously we
can show that optimal pilot selector Ĝ2r+6 for both the plug-in and SCV is of
order n−2/(d+2r+6). Since the pilot and final selectors do not share a common
asymptotic order, this indicates that the functionally independent pilot selec-
tor is crucial to the solid performance of the plug-in and SCV selectors, and
the reduced performance for the UCV where there is no pilot bandwidth.

The analogous generalisation of Equation (3.21) is that a bandwidth se-
lector Ĥr converges to the oracle bandwidth HAMISEr at relative rate n−α ,
α > 0, when vec(Ĥr −HAMISE,r) = OP(Jd2n−α)vecHAMISE,r, where Jd2 is
the d2× d2 matrix of all ones. The rates for the unconstrained selectors are
summarised in Table 5.1, which complement those in Table 3.1. The rates
in the former table are taken from Chacón & Duong (2013, Theorem 1), ex-
cept that these authors established the convergence rate to HMISE,r rather than
HAMISE,r . This does not change the stated rates, apart from for ĤUCV,r, since
the convergence rate of HAMISE,r to HMISE,r is O(n−2/(d+2r+4)).

The performance decreases with increasing dimension and with increas-
ing derivative order. For d ≤ 3, the UCV selector rate of n−min{d,4}/(2d+4r+8)

is slower than the SCV and PI selectors rate, which is n−2/(d+2r+6) for
d ≥ 2 and n−5/(4r+14) for d = 1, due to bias annihilation, as shown in Jones
(1992). This swaps over for d ≥ 4, as the choice of an independent pilot
bandwidth decreases the convergence rates of the latter. The convergence
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rates remain the same for constrained matrices for the cross validation selec-
tors, though the constrained plug-in selectors have a faster rate convergence
n−min{d+4,8}/(2d+4r+12) (again from Jones, 1992) indicating that selecting the
off-diagonal elements of the bandwidth matrix, which determine the orienta-
tion of the kernel, is the most difficult aspect of unconstrained plug-in selec-
tion.

A unit increase in the derivative order leads to an equivalent decrease in
the convergence as twice the increase in the dimension, indicating that density
derivative estimation raises more difficulties than increasing the data dimen-
sion, at least asymptotically. This difficulty partially explains the scarcity of
theoretical and practical results for the former in comparison to density esti-
mators.

Selector Class Convergence rate to HAMISE

ĤUCV,r A,D,F n−min{d,4}/(2d+4r+8)

ĤSCV,r A,D,F n−2/(d+2r+6)

ĤPI,r A n−min{d+4,8}/(2d+4r+12)

ĤPI,r D,F n−2/(d+2r+6)

Table 5.1 Convergence rates to HAMISE,r for the unbiased cross validation ĤUCV,r,
smoothed cross validation ĤSCV,r and plug-in ĤPI,r selectors, for d > 1.

An equivalent treatment of the relative convergence rate of a data-based
pilot bandwidth Ĝ2r+4 to GAMSE,2r+4 follows directly, and which we conjec-
ture would be OP(n−2/(d+2r+8)).

5.8 Case study: The normal density

In this section we provide a detailed collation of numerous results for the
normal case, i.e., where f is the density of the N(µµµ,ΣΣΣ) distribution and K
is taken to be the standard normal kernel. This is an important case, since it
is useful both for better understanding of the AMISE approximation and for
providing normal scale rules as a starting point for developing more advanced
bandwidth selectors.

5.8.1 Exact MISE

As noted in Equation (2.4) for the density case or in Equation (5.11) for the
density derivative case, the MISE can be written as the sum of four terms.
In the normal case, the computations are greatly simplified because all these
four terms are closely related to each other. To determine them, we first note
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that an element-wise application of formula (A.3) in Wand & Jones (1993)
leads to∫

Rd
D⊗r

φΣΣΣ(xxx−µµµ)⊗D⊗r′
φΣΣΣ
′(xxx−µµµ

′)dxxx = (−1)r D⊗(r+r′)
φΣΣΣ+ΣΣΣ

′(µµµ−µµµ
′)

(5.32)
which implies that we have tr

∫
Rd D⊗rφΣΣΣ(xxx − µµµ)D⊗r′φΣΣΣ

′(xxx − µµµ ′)>dxxx =
(−1)r(vec> Idr+r′ )D⊗(r+r′)φΣΣΣ+ΣΣΣ

′(µµµ − µµµ ′). This can be further simplified for
µµµ = µµµ ′ = 000 and r = r′, since using the formulas for the derivatives of the
normal density given in Holmquist (1996a) yields

tr
∫
Rd

D⊗r
φΣΣΣ(xxx)D⊗r

φΣΣΣ
′(xxx)>dxxx = (2π)−d/2|ΣΣΣ+ΣΣΣ

′|−1/2
νr
(
(ΣΣΣ+ΣΣΣ

′)−1)
where, as introduced in Section 5.1.3, for a standard normal variable ZZZ,
νr(A) = OF(2r)(vec>A)⊗rSSSd,2r(vecId)

⊗r = E{(ZZZ>AZZZ)r}.
Observing also that (D⊗rφΣΣΣ)∗φΣΣΣ

′ =D⊗rφΣΣΣ+ΣΣΣ
′ , the four terms involved in

the exact MISENS formula in Section 5.6.1 are

|H|−1/2 tr
{
(H−1)⊗rR(D⊗rK)

}
= tr

∫
Rd

D⊗r
φH(xxx)D⊗r

φH(xxx)>dxxx

= (2π)−d/2|2H|−1/2
νr
(
(2H)−1)

trR∗(KH ∗KH,D
⊗r f ) = tr

∫
Rd

D⊗r
φ2H+ΣΣΣ(xxx)D⊗r

φΣΣΣ(xxx)>dxxx

= (2π)−d/2|2H+2ΣΣΣ|−1/2
νr
(
(2H+2ΣΣΣ)−1)

trR∗(KH,D
⊗r f ) = tr

∫
Rd

D⊗r
φH+ΣΣΣ(xxx)D⊗r

φΣΣΣ(xxx)>dxxx

= (2π)−d/2|H+2ΣΣΣ|−1/2
νr
(
(H+2ΣΣΣ)−1)

trR(D⊗r f ) = tr
∫
Rd

D⊗r
φΣΣΣ(xxx)D⊗r

φΣΣΣ(xxx)>dxxx

= (2π)−d/2|2ΣΣΣ|−1/2
νr
(
(2ΣΣΣ)−1).

5.8.2 Curvature matrix

To find an explicit form for the AMISE requires a formula for the ma-
trix R(D⊗sφΣΣΣ) =

∫
Rd D⊗sφΣΣΣ(xxx)D⊗sφΣΣΣ(xxx)>dxxx ∈Mds×ds or, equivalently, for

ψψψNS,2s = (−1)s vecR(D⊗sφΣΣΣ), for different values of s. To begin, observe
that from D⊗sφΣΣΣ(xxx)= |ΣΣΣ|−1/2(ΣΣΣ−1/2)⊗sD⊗sφ(ΣΣΣ−1/2xxx), after a change of vari-
ables, it follows that

R(D⊗s
φΣΣΣ) = |ΣΣΣ|−1/2(ΣΣΣ−1/2)⊗sR(D⊗s

φ)(ΣΣΣ−1/2)⊗s (5.33)
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or ψψψNS,2s = (−1)s|ΣΣΣ|−1/2(ΣΣΣ−1/2)⊗2s vecR(D⊗sφ), so it suffices to find a for-
mula for the standard normal distribution.

For the base case of density estimation, we require a formula for
R(D⊗2φ). Since D⊗2φ(zzz) = φ(zzz)(zzz⊗2−vecId), then

D⊗2
φ(zzz)D⊗2

φ(zzz)> = (4π)−d/2
φ2−1Id

(zzz){(zzzzzz>)⊗ (zzzzzz>)− zzz⊗2 vec> Id

− (vecId)zzz>⊗2 +vecId vec> Id}.

Therefore R(D⊗2φ) can be computed as a combination of the moments
of order 0, 2 and 4 of the N(000,2−1Id) distribution. From Theorem 9.20
in Schott (1996) it follows that

∫
Rd φ2−1Id

(zzz)(zzzzzz>) ⊗ (zzzzzz>)dzzz = 1
4(Id2 +

Kd,d + vecId vec> Id), with Kd,d the d2 × d2 commutation matrix, and∫
Rd φ2−1Id

(zzz)zzz⊗2dzzzvec> Id = 1
2 vecId vec> Id = vecId

∫
Rd φ2−1Id

(zzz)zzz>⊗2dzzz.
Thus we have

R(D⊗2
φ) = 1

4(4π)−d/2(Id2 +Kd,d +vecId vec> Id). (5.34)

More generally, Equation (5.32) immediately yields ψψψNS,2s =D⊗2sφ2ΣΣΣ(0),
and the expression of the normal density derivative using the Hermite poly-
nomial in Equation (5.5) leads to

ψψψNS,2s = (−2)−s(4π)−d/2OF(2s)|ΣΣΣ|−1/2SSSd,2s(vecΣΣΣ
−1)⊗s.

Analogous to Equation (5.7) in Section 5.1.3, the relationship with the mo-
ments of the multivariate normal distribution µµµ2s = E(ZZZ⊗2s) is ψψψNS,2s =

(−2)−s(4π)−d/2|ΣΣΣ|−1/2(ΣΣΣ−1/2)⊗2sµµµ2s. It then follows that, for every s≥ 0,

R(D⊗s
φΣΣΣ) = 2−s(4π)−d/2|ΣΣΣ|−1/2(ΣΣΣ−1/2)⊗sE{(ZZZZZZ>)⊗s}(ΣΣΣ−1/2)⊗s. (5.35)

5.8.3 Asymptotic MISE

We asserted that an expression for the asymptotic IV in Equation (5.15) is
n−1|H|−1/2 tr

{
(H−1)⊗rR(D⊗rK)

}
= 2−r(4π)−d/2n−1|H|−1/2νr

(
H−1

)
, so to

find the AMISE in the normal case, it only remains to compute the ISB.
For the density base case, the IV reduces to (4π)−d/2n−1|H|−1/2 and,

from Equations (5.33)–(5.34), the quadratic form that appears in the asymp-
totic ISB can be written as

Q(H) = (vec>H)R(D⊗2
φΣΣΣ)vecH

= 1
4(4π)−d/2|ΣΣΣ|−1/2{vec>(ΣΣΣ−1/2HΣΣΣ

−1/2)}
× (Id2 +Kd,d +vecId vec> Id)vec(ΣΣΣ−1/2HΣΣΣ

−1/2)

= 1
4(4π)−d/2|ΣΣΣ|−1/2{2tr(ΣΣΣ−1/2HΣΣΣ

−1HΣΣΣ
−1/2)+ tr2(ΣΣΣ−1/2HΣΣΣ

−1/2)}
= 1

4(4π)−d/2|ΣΣΣ|−1/2{2tr(HΣΣΣ
−1HΣΣΣ

−1)+ tr2(HΣΣΣ
−1)}. (5.36)
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For the first equality, and in several occasions hereafter, we use the
formula (C> ⊗ A)vecB = vec(ABC) for conformable matrices A,B,C
(see Appendix B). The previous display, combined with Equation (2.10)
and that m2(φ) = 1, results in the normal scale AMISE included
in Section 3.1; that is, AMISENS{ f̂ (·;H)} = n−1|H|−1/2(4π)−d/2 +
1
16(4π)−d/2|ΣΣΣ|−1/2

{
2tr
(
HΣΣΣ
−1HΣΣΣ

−1)+ tr2
(
HΣΣΣ
−1)}. This result was first as-

serted in Wand (1992), but the derivation here provided is different.
For density derivative estimation, noting that (ΣΣΣ−1/2)⊗2 vecH = vecA

with A = ΣΣΣ
−1/2HΣΣΣ

−1/2, and making use of Equation (5.35) with s = r+ 2,
then for the asymptotic ISB we have

tr
[
(Idr ⊗vec>H)R(D⊗(r+2)

φΣΣΣ)(Idr ⊗vecH)
]

= 2−(r+2)(4π)−d/2|ΣΣΣ|−1/2 tr
[
{(ΣΣΣ−1)⊗r⊗ (vecAvec>A)}

×E{(ZZZZZZ>)⊗(r+2)}
]
.

The trace on the right-hand side can be written as

E tr{(ΣΣΣ−1ZZZZZZ>)⊗r⊗ [(vecAvec>A)(ZZZZZZ>)⊗2]}
= E{trr(ΣΣΣ−1ZZZZZZT ) tr[vecAvec>(ZZZZZZ>AZZZZZZ>)]}
= E{(ZZZ>ΣΣΣ

−1ZZZ)r(ZZZ>AZZZ)2}= νr,2(ΣΣΣ
−1,A)

thus yielding the normal scale AMISE as given in Section 5.6.1.

5.8.4 Normal scale bandwidth

The normal scale bandwidth is the minimiser of the AMISE in the normal
case. For density estimation, an explicit formula for such a bandwidth is ob-
tained by minimising AMISENS{ f̂ (·;H)}. A possible way to derive it is by
computing the gradient of the AMISE with respect to vecH, as it is done in
Wand (1992).

Here, an alternative path is followed. From Section 2.9.2, taking into ac-
count that R(K) = (4π)−d/2 and m2(K) = 1 for the normal kernel, it follows
that

HNS = {d(4π)−d/2/Q(A0)}2/(d+4)n−2/(d+4)A0, (5.37)

where A0 = argminA∈F,|A|=1 Q(A) and Q(A) is defined as in (5.36). Reason-
ing as in Theorem A.1 in Celeux & Govaert (1995) it is possible to show that,
in this case, A0 = |ΣΣΣ|−1/dΣΣΣ so that Q(A0) =

1
4(4π)−d/2|ΣΣΣ|−(d+4)/(2d)d(d+2)

and, therefore, HNS = {4/(d +2)}2/(d+4)n−2/(d+4)ΣΣΣ, as in Equation (3.2).
The constrained normal scale bandwidths in Equations (3.3)–(3.4) can
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be obtained similarly, by finding the minimiser of Q(A) within the appro-
priate class of matrices. The only matrix in A with unit determinant is Id ,
with Q(Id) =

1
4(4π)−d/2|ΣΣΣ|−1/2{2tr(ΣΣΣ−2) + tr2(ΣΣΣ−1)}, which gives Equa-

tion (3.3). For class D, now reasoning as in Corollary A.1 in Celeux & Go-
vaert (1995), it follows that the minimiser of Q(A) for A ∈ D with |A| = 1
is Ã0 = |diagΣΣΣ|−1/d diagΣΣΣ, i.e., the (normalised) diagonal matrix having the
same diagonal as ΣΣΣ. So writing ∆∆∆= (diagΣΣΣ)−1ΣΣΣ as in Section 3.1, the attained
minimum is Q(Ã0) =

1
4(4π)−d/2|ΣΣΣ|−1/2|diagΣΣΣ|−2/d{2tr(∆∆∆−2) + tr2(∆∆∆−1)}

which, once substituted into Equation (5.37) gives the optimal diagonal band-
width for the normal case in Equation (3.4).

For density derivative estimation, the calculations are slightly more com-
plicated. It is simplest to begin with the assumption that the normal scale
bandwidth takes the form H = c2ΣΣΣ for some c > 0 and then to minimise
AMISENS{D⊗r f̂ (·;H)} with respect to c. It is then necessary to prove that
νr,2(ΣΣΣ

−1,Id) = (d + 2r + 2)(d + 2r)νr(ΣΣΣ
−1) in order to obtain the normal

scale bandwidth in Equation (5.18). The details of this non-trivial proof can
be found in Section A.2.2 of Chacón et al. (2011). The scalar bandwidth in
Equation (5.19) is then obtained by minimising AMISENS{D⊗r f̂ (·;H)} for
H = h2Id .

5.8.5 Asymptotic MSE for curvature estimation

Plug-in bandwidth selectors rely on the choice of a pilot bandwidth ma-
trix G to estimate the curvature matrix, or more generally, the functional
ψψψ2s = (−1)s vecR(D⊗s f ). Theorem 1 in Chacón & Duong (2010) shows
that the dominant term of the MSE of the kernel estimator ψ̂ψψ2s(G) =
n−2

∑
n
i, j=1D

⊗2sLG(XXX i−XXX j) is given by

AMSE{ψ̂ψψ2s(G)}= ‖n−1|G|−1/2(G−1/2)⊗2sD⊗2sL(000)

+ 1
2 m2(L)(vec>G⊗ Id2s)ψψψ2s+2‖2. (5.38)

In order to obtain a normal scale rule for the choice of G it is necessary to
find a formula for such AMSE and its minimiser in the normal case.

To begin with, using a normal kernel L = φ it follows from Section 5.1.3
that D⊗2sφ(000) = (−1)s(2π)−d/2µµµ2s. From Section 5.8.2 we already have
ψψψNS,2s+2 = (−2)−(s+1)(4π)−d/2|ΣΣΣ|−1/2(ΣΣΣ−1/2)⊗2s+2µµµ2s+2, so that

AMSENS{ψ̂ψψ2s(G)}= (2π)−d‖n−1|G|−1/2(G−1/2)⊗2s
µµµ2s

−2−(d+2s+4)/2|ΣΣΣ|−1/2{vec>(ΣΣΣ−1/2GΣΣΣ
−1/2)⊗ (ΣΣΣ−1/2)⊗2s}µµµ2s+2‖2.
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As before, we seek to minimise AMSENS{ψ̂ψψ2s(G)} within the class of matri-
ces of the form G = c2ΣΣΣ with c > 0, for which

AMSENS{ψ̂ψψ2s(c
2
ΣΣΣ)}= (2π)−d |ΣΣΣ|−1‖n−1c−d−2s(ΣΣΣ−1/2)⊗2s

µµµ2s

−2−(d+2s+4)/2c2{vec> Id⊗ (ΣΣΣ−1/2)⊗2s}µµµ2s+2‖2.

This can be further simplified by taking into account the result in Section
5.9.2, which shows that E{(ZZZ>ZZZ)ZZZ⊗2s} = (d + 2s)µµµ2s. Thus {vec> Id ⊗
(ΣΣΣ−1/2)⊗2s}µµµ2s+2 = (ΣΣΣ1/2)⊗2sE{(ZZZ>ZZZ)ZZZ⊗2s} = (d + 2s)(ΣΣΣ1/2)⊗2sµµµ2s, and
this implies that

AMSENS{ψ̂ψψ2s(c
2
ΣΣΣ)}= (2π)−d |ΣΣΣ|−1‖(ΣΣΣ−1/2)⊗2s

µµµ2s‖2

×
{

n−1c−d−2s−2−(d+2s+4)/2c2(d +2s)
}2
.

This is annihilated for c = {2/(d+2s)}1/(d+2s+2)21/2n−1/(d+2s+2), leading to
GNS,2s = {2/(d+2s)}2/(d+2s+2)2ΣΣΣn−2/(d+2s+2), as asserted in Section 5.6.4.

This situation in which the dominant term of the MSE can be completely
annihilated is a special property of the normal case, due to the fact that the
two vectors that make up the bias are proportional for this particular choice of
L and f . On the other hand, for the general case, the AMSE in Equation (5.38)
can only be minimised. In the univariate case, in contrast, Jones & Sheather
(1991) noted that the leading term of the MSE can always be annihilated for
this problem (subject to some sign restrictions which are easily fulfilled), thus
leading to faster convergence rates than would be expected from the general
multivariate analysis.

For the pilot bandwidth for SCV, the AMSE∗NS{ψ̂ψψ2s(G)} is similar to
AMSENS{ψ̂ψψ2s(G)} but with different coefficients of the same terms. Sup-
posing that G = c2ΣΣΣ, we have

AMSE∗NS{ψ̂ψψ2s(c
2
ΣΣΣ)}

= (2π)−d |ΣΣΣ|−1‖n−1c−d−2s(ΣΣΣ−1/2)⊗2s
µµµ2s

− 1
2 c2{vec> Id⊗ (ΣΣΣ−1/2)⊗2s}µµµ2s+2‖2

= (2π)−d |ΣΣΣ|−1‖(ΣΣΣ−1/2)⊗2s
µµµ2s‖2{n−1c−d−2s− 1

2 c2(d +2s)
}2
.

This is annihilated at c = {2/(d + 2s)}1/(d+2s+2)n−1/(d+2s+2), leading to
G∗NS,2s = {2/(d +2s)}2/(d+2s+2)ΣΣΣn−2/(d+2s+2), as asserted in Section 5.6.5.
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5.9 Further mathematical analysis of density derivative estimators

5.9.1 Taylor expansions for vector-valued functions

It is not common to find Taylor’s theorem for vector-valued functions in the
literature, and if it is indeed provided, it is unlikely to be in the form of The-
orem 5 that we require. The closest previously published form is in Theorem
1.4.8 of Kollo & von Rosen (2005). Given its importance in this chapter, we
outline a brief proof.

Proof (Proof of Theorem 5) Writing a vector-valued function fff : Rd→Rp

in terms of its components fff = ( f1, . . . , fp), it is possible to apply the usual
form of Taylor’s theorem to each of the real-valued components, to obtain

fi(xxx+aaa) =
r

∑
j=0

1
j!
(aaa>)⊗ jD⊗ j fi(xxx)+Rei(aaa)

where Rei(aaa) = o(‖aaa‖r) for every i = 1, . . . , p, as stated in Equation (2.5).
Then, all the component-wise expansions can be gathered together by noting
that (aaa>)⊗ jD⊗ j f1(xxx)

...
(aaa>)⊗ jD⊗ j fp(xxx)

=

 (aaa>)⊗ j · · · 000>d
...

. . .
...

000>d · · · (aaa>)⊗ j

 ·
 D⊗ j f1(xxx)

...
D⊗ j fp(xxx)


=
{

Ip⊗ (aaa>)⊗ j}D⊗ j fff (xxx). �

5.9.2 Relationship between multivariate normal moments

A key fact to obtain the normal scale pilot bandwidth for curvature esti-
mation in Section 5.8.5 was to notice that, for a d-variate standard normal
random vector ZZZ = (Z1, . . . ,Zd) and an even number p = 2q, the vectors
vvv1 = E{ZZZ⊗p} ∈ Rdp

and vvv2 = E{(ZZZ>ZZZ)ZZZ⊗p} ∈ Rdp
are proportional, i.e.,

vvv2 = (d + p)vvv1. (5.39)

In the original work of Chacón & Duong (2010) a weaker version of Equa-
tion (5.39) was shown to hold: (vvv>1 vvv2)/(vvv>1 vvv1) = d+ p. For completeness, we
provide the proof for the stronger result.

For d = 1, taking into account the symmetry of the standard normal den-
sity φ(z) = (2π)−1/2 exp{−1

2 z2} and making the change of variables y = z2,
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we can write

v1 = E(Zp) = (2π)−1/2
∫

∞

−∞

(z2)q exp(−1
2 z2)dz

= (2π)−1/22
∫

∞

0
(z2)q exp(−1

2 z2)dz = (2π)−1/2
∫

∞

0
yq−1/2 exp(−1

2 y)dy.

Therefore, by changing q for q + 1 in the last formula, we obtain v2 =
(2π)−1/2 ∫ ∞

0 yq+1/2 exp(−1
2 y)dy. Integration by parts with u = yq+1/2 and

dv = exp(−1
2 y)dy, so that du = (q+ 1/2)yq−1/2dy and v = −2exp(−1

2 y),
yields

v2 = (2π)−1/2
∫

∞

0
yq+1/2 exp(−1

2 y)dy

= 2(q+ 1
2)(2π)−1/2

∫
∞

0
yq−1/2 exp(−1

2 y)dy = (p+1)v1.

A simpler proof in the univariate case can be obtained from the fact that
E(Zp) = OF(p), as shown in Johnson et al. (1994, p. 89), but the above con-
structive reasoning is useful for the multivariate case.

For d > 1, the goal is to show that all the elements of the vectors vvv1
and vvv2 are proportional, with the same proportionality constant. All the el-
ements of vvv1 have the form E(Z j1 · · ·Z jp) with j` ∈ {1, . . . ,d} for all ` =
1, . . . , p and, since ZZZ>ZZZ = ∑

d
i=1 Z2

i , the corresponding coordinate in vvv2 is
∑

d
i=1E(Z2

i Z j1 · · ·Z jp). Equivalently, it is useful to express the coordinates of
vvv1 as v1;p1,...,pd = E(Zp1

1 · · ·Z
pd
d ) with 0 ≤ pi ≤ p for all i = 1, . . . ,d and

∑
d
i=1 pi = p. The corresponding coordinates in vvv2 are given as v2;p1,...,pd =

∑
d
i=1E(Z2

i Zp1
1 · · ·Z

pd
d ). If any of the pi are odd, then both corresponding co-

ordinates are zero, due to the symmetry of the normal distribution, so any
proportionality constant is valid. Hence, for the remaining case, we assume
that pi = 2qi, again with ∑

d
i=1 qi = q. For a fixed i ∈ {1, . . . ,d}, integrating

first with respect to the i-th coordinate and applying the same reasoning as
for the univariate case, we have E(Z2

i Zp1
1 · · ·Z

pd
d ) = (pi + 1)E(Zp1

1 · · ·Z
pd
d ).

This implies, as ∑
d
i=1 pi = p, that

v2;p1,...,pd =
d

∑
i=1

(p1 +1)v1;p1,...,pd = (p+d)v1;p1,...,pd ,

which concludes the proof of Equation (5.39).
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Chapter 6

Applications related to density and
density derivative estimation

In the previous chapters we focused on density and density derivative estima-
tors in their own right as they play a directly important role for exploratory
data analysis. In this chapter, we focus on more complex data analysis appli-
cations in which density and density derivative estimators are crucial compo-
nents. Section 6.1 covers the estimation of the level sets of a density func-
tion: high threshold level sets are used in modal region estimation and bump-
hunting, and low threshold sets for density support estimation. Section 6.2
examines cluster analysis where the clusters are identified as the basins of
attractions of the density gradient to local data density modes. Section 6.3
introduces the ridges of the density function, since they are based on the
eigenvector decomposition of the density Hessian, as a tool for analysing fil-
amentary data. Section 6.4 places density curvature estimators into a formal
inference framework to delimit significantly data dense regions, which offers
an alternative to the level sets of the data density in Section 6.1 for modal
region estimation.

6.1 Level set estimation

Since the densities and density derivatives are functions, then important re-
lated objects are level sets of these functions and their associated graphs. The
level set of a function f at level c is defined as the set of points at which the
values of f are above c; that is, L(c) = {xxx : f (xxx)≥ c}. We focus on the level
sets of a density function, but our exposition applies equally to other func-
tions; for example, in the previous chapter we explored the level sets of the
summary curvature function s, and the level sets of regression functions are
also of interest (see Polonik & Wang, 2005, and references therein).

Regarding density level sets, they possess a large potential for appli-
cations in diverse statistical problems. Hartigan (1975) considered the con-
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nected components of density level sets as high-density clusters of a distribu-
tion (see also Section 6.2), Hyndman (1996) explored the use of these highest
density regions as a graphical representation of a distribution, and Klemelä
(2004) proposed level set trees as a tool for visualisation of multivariate den-
sity estimates. Level sets at low level values can also be useful for outlier
detection (Baı́llo et al., 2001). More generally, by exploring all the level sets
of a density function as the level varies, it is possible to recover more detailed
topological features of the distribution (Bobrowski et al., 2017), as covered
in a recently emerging field known as topological data analysis (Wasserman,
2018).

Given a fixed threshold c and any estimator f̂ of the density function f ,
the plug-in estimator of L(c) ≡ L( f ;c) is L̂(c) ≡ L( f̂ ;c) = {xxx : f̂ (xxx) ≥ c}.
A natural choice is to take f̂ as a kernel density estimator, as introduced in
Dobrow (1992), but it is worth pointing out that there exist alternative esti-
mators which target the level sets directly without the intermediate density
estimation, or estimators based on the geometric properties of the level sets
(see the recent exhaustive review of Saavedra-Nieves et al., 2014).

As noted earlier in Section 2.2.1, an alternative parameterisation may
be considered so that, for a given α ∈ (0,1), the level c = cα is chosen as
the largest threshold such that L(cα) has probability content greater than or
equal to 1−α . This threshold cα also depends on the unknown density, so for
practical data analysis it needs to be estimated from the data as well. Cadre
(2006) explored the possibility of estimating cα by the corresponding quan-
tity defined in terms of the kernel level set estimator, but Cadre et al. (2013)
noted that this is asymptotically equivalent to the (computationally more ef-
ficient) proposal of Hyndman (1996), which defines ĉα as the α-quantile of
f̂ (XXX1;H), . . . , f̂ (XXXn;H), where f̂ (·;H) is the kernel density estimator based
on XXX1, . . . ,XXXn. The resulting ‘nested’ plug-in estimator of the level set is
L̂(ĉα)≡ L( f̂ ; ĉα) = {xxx : f̂ (xxx;H)≥ ĉα}.

To evaluate the accuracy of level set estimators, as the involved entities
are sets, it is necessary to use a distance between sets. This is usually based
on a measure of the symmetric difference, defined for sets A and B as A∆B =
(A∪B)\(A∩B) = (A∩Bc)∪(Ac∩B). Some common choices for the measure
µ are the Lebesgue measure µ = λ (so that λ (A∆B) is the hyper-volume
of A∆B), or the underlying probability measure µ = P. These are known as
distance-in-measure. A different analysis stems from the use of the Hausdorff
distance (Cuevas et al., 2006; Singh et al., 2009).

The asymptotic behaviour of the plug-in level set estimators has been the
subject of intensive investigation, although these studies focus on the use of a
constrained bandwidth of the form H = h2Id for some h > 0. A general con-



6.1. LEVEL SET ESTIMATION 129

sistency result for the distance-in-measure was shown in Cuevas et al. (2006)
and consistency for the Hausdorff measure can be deduced from the results in
Molchanov (1991). Convergence rates for µ{L̂(ĉα)4L(cα)} were provided
in Baı́llo (2003), where they were shown to depend on the flatness of f at
c. Cadre (2006) showed that the random variable (nhd)1/2µ{L̂(ĉ)4L(c)}
converges to a degenerate deterministic distribution taking only a single
value, which implies that µ{L̂(c)∆L(c)} converges in probability to 0 at rate
(nhd)−1/2. We conjecture that this rate is n−1/2|H|−1/4 for unconstrained ma-
trices.

Samworth & Wand (2010) obtained an asymptotic expansion for the ex-
pected distance-in-measure of kernel level set estimators in the univariate
case, and used it to derive an automatic bandwidth selection procedure for
level set estimation. On the other hand, the simulation study of Saavedra-
Nieves et al. (2014) revealed that bandwidth selectors designed for density
estimation appeared to be as competitive as the bandwidth selectors specifi-
cally aimed for level set estimation, so the bandwidth selectors introduced in
Chapter 3 are also useful for multivariate level set estimation.

6.1.1 Modal region and bump estimation

A local mode of a (density) function f is the point whose value is greater
than all functional values in a local neighbourhood. A local mode belongs to
the class of fixed points of a function which are crucial in characterising the
behaviour of the function. As an isolated mode has a zero probability mass,
we extend it to cover a modal region so that the latter has positive mass. A
bump is the graph of a modal region. Thus modal regions and bumps are
more suitable for visualisation than single modal points. Furthermore, modal
regions and bumps can be identified with the important data-rich regions.

Univariate bump-hunting (as coined by Good & Gaskins, 1980) is greatly
assisted by the unambiguously defined upwards and downward tangent slope
for establishing local convexity and determining when a modal region/bump
is separated by regions of lower density. With multivariate data, there is a
richer class of behaviour at the tangent plane so an unambiguous direction
of the slope is not well-defined. Locally following a single direction, e.g.,
steepest descent, is insufficient to establish the location and extent of a d-
dimensional modal region. So we seek an alternative characterisation of a
modal region.

Considering that a mode at xxx in a density function f requires the inequal-
ity f (xxx)≥ f (yyy) to hold for all yyy in a local neighbourhood, then this recalls the
form of a level set. Now, denote as fτ the τ-th quantile of f (XXX) for XXX ∼ f ,



130 APPLICATIONS OF DENSITY DERIVATIVES

so that P(XXX ∈ L( fτ)) = 1− τ . The modal regions of f can be recovered by
inspecting the level set L( fτ) for suitable values of τ , as this is the result of
a global thresholding procedure and so it is not restricted to producing a sin-
gle simply connected region. Rather than being a disadvantage, this approach
avoids a two-stage local approach consisting of searching first for the local
modes individually and then subsequently expanding them into their respec-
tive modal regions.

Alternatively, the data-rich regions can be also defined as the modal re-
gions of the summary density curvature s(xxx) =−111{H f (xxx)< 0}abs(|H f (xxx)|)
from Equation (5.4), namely L(sτ) = {xxx :−s(xxx)≥−sτ} where sτ is the τ-th
quantile of s(XXX)|{s(XXX)< 0}, since s is a non-positive function.

Example 6.1 For the daily temperature data, these two modal regions as the
level sets of the density and the summary density curvature estimates are dis-
played in Figure 6.1(a) in the purple regions and (b) in the orange regions. The
selected threshold for these level sets is τ = 0.25 and the levels f̂0.25 and ŝ0.25
have been obtained from the corresponding kernel estimates of f and s. The
τ = 0.25 threshold may not appear to be a priori sufficiently low to define the
modal regions, if we infer that this corresponds to a univariate upper quar-
tile. This intuition from univariate analysis does not carry over well as the
rectangle subtended by the data range Ω = [−7.2,26.0]× [1.4,44.8] has an
area of 1440, whereas the area of the 25% contour region L̂( f̂0.25) is 3.59%
of the area of Ω, whilst it contains 25% of the data points. The 25% con-
tour regions for the summary density curvature contain 10.48% of the data
points and comprise an area which is 1.28% of the area of Ω. In this case,
L̂(ŝ0.25) ⊂ L̂( f̂0.25) though this is not always guaranteed. That small regions
contain considerable proportions of the data indicates that for this data set, the
25% contours are a reasonable visualisation of the data-rich modal regions.

�

Example 6.2 For the stem cell data, we use the 50% modal regions, as
τ = 0.25 results in insufficiently sizeable regions, as illustrated in Figure 6.2.
Whilst 50% appears to be too high a threshold to define the modal regions, for
these data, due the highly unbalanced sample sizes within each of these re-
gions, only the two highest modes are identified using global thresholds with
the level sets L̂( f̂0.5), L̂(ŝ0.5). �

As Figures 6.1 and 6.2 give a graphical intuition of modal regions, we
proceed to a more formal description of how they are estimated from the
data sample. Recall again that the estimator of the probability contour level
fτ is the τ-th quantile of f̂ (XXX i;H), i = 1, . . . ,n. This leads to the plug-in es-
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(a) (b)

Figure 6.1 Modal regions of the kernel estimates for the daily temperature data. (a)–
(b) Modal regions. (a) 25% contour of density estimate f̂ (purple). (b) Quasi-25%
contour of summary density curvature estimate ŝ (orange).

(a) (b)

Figure 6.2 Modal regions of the kernel estimates for the stem cell data, for sub-
ject #12. (a) 50% contour of density estimate f̂ (purple). (b) Quasi-50% contour of
summary density curvature estimate ŝ (orange).

timator of the probability contour region L̂( f̂τ) = {xxx : f̂ (xxx;H) ≥ f̂τ}. By
construction

∫
L̂( f̂τ )

f̂ (xxx;H)dλ (xxx) = 1− τ , and Cadre (2006) showed that∫
L̂( f̂τ )

f (xxx)dλ (xxx) = (1− τ){1 + op(1)}. Due to the minimal hypervolume

property of L̂ then as τ increases to 1, the {L̂( f̂τ)} form a sequence of sets
with monotonically decreasing hypervolumes. In the limit as τ → 1, L̂( f̂τ)
converges to the isolated mode(s) of the density estimate. For a suitable value
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of τ , L̂( f̂τ) is an estimator of the modal region(s), and {(xxx, f̂ (xxx;H)) : xxx ∈
L̂( f̂τ)} of the bumps of f .

The estimation of modal regions as the level sets of the summary density
curvature follows analogously. For the Hessian H f̂ (xxx;H) we have ŝ(xxx;H) =
−111{H f̂ (xxx;H)< 0}abs(|H f̂ (xxx;H)|). The threshold estimate is the τ-quantile
of the reduced sample {ŝ(XXX i;H) : ŝ(XXX i;H) < 0} which consists of only
those data points whose Hessian matrix is negative definite. Despite that
L̂(ŝτ) = {xxx : −ŝ(xxx;H) ≥ −ŝτ} does not have the same probabilistic inter-
pretation as L̂( f̂τ) as ŝ is not a true density function, it remains that L̂(ŝτ)
and {(xxx, ŝ(xxx;H)) : xxx ∈ L̂(ŝτ)} also yield suitable visualisations of the modal
regions and bumps.

6.1.2 Density support estimation

Whilst modal regions are level sets with a high threshold, at the other end is
the support of f which is the set of points with strictly positive density value:

S = L∗(0) = L∗( f ;0) = {xxx : f (xxx)> 0}

where L∗ is the level set L except that the greater than or equal to inequality
is replaced with a strict inequality, and A is the closure of a set A.

The first density support estimator was introduced by Devroye & Wise
(1980), along with applications to abnormal behaviour detection in statistical
quality control (see also Baı́llo et al., 2000). They proposed to estimate S by
the union of closed balls of radius ε > 0, centred at each of the sample points.
We recognise this as the support of a kernel density estimator whose kernel is
supported on the unit closed ball and whose bandwidth is ε2Id . Elaborating
on this idea, Dobrow (1992) suggested the plug-in estimator Ŝ(H) = L̂∗(0) =
L∗( f̂ ;0) = {xxx : f̂ (xxx;H)> 0} using a kernel density estimator f̂ . In this case
then, Ŝ(H) resembles the structure of the Devroye-Wise estimator, since it
can be written as Ŝ(H) =

⋃n
i=1{XXX i +H1/2yyy : yyy ∈ SK}, where SK denotes the

support of K. In practise, a kernel with compact support must be used, for
otherwise the degenerate estimator Ŝ(H) = Rd is obtained.

An alternative, suggested by Cuevas & Fraiman (1997), is to replace the
zero threshold with a small non-zero one, which acts as a new tuning pa-
rameter. Whenever the threshold is non-zero, then we can consider the usual
level sets L rather than L∗, since for any c > 0 the symmetric difference
L̂(c)∆L̂∗(c) = {xxx : f̂ (xxx;H) = c} = ∂ L̂(c) has zero Lebesgue measure in
most cases. A suitable data-based threshold would be the probability contour
threshold f̂τ for a small value of τ close to zero, which leads to the support es-
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timator L̂( f̂τ). A side benefit of a non-zero threshold is that it typically results
in a differentiable boundary ∂ L̂( f̂τ) whereas ∂ L̂∗(0) typically does not.

Example 6.3 Two density support estimates for the daily temperature data
are displayed in Figure 6.3. In Figure 6.3(a) is the Devroye-Wise estimate Ŝ
with a truncated normal kernel with SK = [−3.7,3.7]× [−3.7,3.7]. By con-
struction, it covers all the data points, though we observe that the boundary
of Ŝ is highly non-smooth as it is composed of intersections of rectangles.
Its convex hull is the grey dotted curve. In Figure 6.3(b), we have L̂( f̂τ) for
τ = 0.05,0.005,0.0005. Despite their under-estimation of the target support,
they arguably provide a more visually informative estimate than the previous
ones for these data. This under-estimation can be attenuated by considering
the convex hull of L̂( f̂0.0005) (the dashed purple curve). �

(a) (b)

Figure 6.3 Density support estimates for the daily temperature data. The tempera-
ture measurements are the green points. The support estimates are the solid black
curves. (a) Devroye-Wise estimate Ŝ. The convex hull of Ŝ is the dotted grey curve.
(b) Probability contour thresholds L̂( f̂τ),τ = 0.05,0.005,0.0005. The convex hull of
L̂( f̂0.0005) is the dashed purple curve.

The under-estimation of the density support induced by L̂( f̂τ) is not al-
ways a disadvantage. In biogeographic studies, the home range is ‘that area
traversed by the individual in its normal activities of food gathering, mating
and caring for young. Occasional sallies outside the area, perhaps exploratory
in nature, should not be considered as in part of the home range’ (Burt, 1943).
This explains why the convex hull of all the animal locations (and other re-
lated deterministic geometric methods) tend to over-estimate the home range
as they are unable to exclude these ‘occasional sallies’. To resolve this, Jen-
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nrich & Turner (1969) took as their starting point the utilisation distribution,
which is the term for the density function of the animal locations in these
types of studies, to define the home range as the smallest region which ac-
counts for a specified proportion of its total utilisation. This corresponds ex-
actly to the level set of the density with probability contour threshold L( fτ),
with τ = 0.01,0.05 as common choices. Since Worton (1989) demonstrated
the usefulness of kernel estimators of the utilisation distribution and the home
range, they have been widely adopted for analysing these animal movement
data. See Baı́llo & Chacón (2018) for a recent detailed survey of home range
estimation techniques.

Example 6.4 The concepts of home range and the utilisation distribution can
be adapted to other organisms like plants, as illustrated in Figure 6.4 for the
grevillea locations (green points). The 1% probability contour L̂( f̂0.01) is the
solid black curve and its convex hull is the dashed purple curve. In compari-
son, the convex hull of the locations is the grey dotted curve. �

Figure 6.4 Density support estimates for the Grevillea data. The Grevillea locations
are the green points. The convex hull of these locations is the grey dotted curve. The
1% probability contour L̂( f̂0.01) is the solid black curve and its convex hull is the
dashed purple curve.

Implicit in this treatment of support estimation so far is that the density
support is finite. Nonetheless for infinitely supported densities, it is still of
interest to compute L( fτ) as an ‘effective’ support. Moreover, as L( fτ) ⊆
L∗(0), the under-coverage of this effective support can be controlled since
P(L∗(0)∆L( fτ)) = P(L( fτ)) = τ .

If additional geometric assumptions on the support S are imposed, then
further alternatives not requiring smoothing parameters are available. For ex-
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ample, if S is assumed to be convex then a natural estimator of S is the convex
hull of the sample points (Rényi & Sulanke, 1963). Korostelev & Tsybakov
(1993) showed that this is the maximum likelihood estimator in the family
of all closed convex sets, and Dümbgen & Walther (1996) obtained its con-
vergence rates. A related but less restrictive geometric assumption on S is
α-convexity, which allows for the corresponding α-convex hull estimator of
S, introduced in Rodrı́guez-Casal (2007).

6.2 Density-based clustering

As a data analysis problem, the goal of cluster analysis is to discover homoge-
neous subgroups within a data set. We intuitively understand the construction
of data clusters in a trade-off of similarity/dissimilarity: members of the same
cluster are similar to each other and members of different clusters are dissim-
ilar to each other. Many clustering techniques and algorithms have been pro-
posed in the literature: Everitt et al. (2011) provide a complete reference for
the classical approaches. Here we will adopt a modern nonparametric setup,
in which clusters are naturally associated with the density modes.

From a nonparametric point of view, the task of placing the classical
heuristic definition within a formal statistical framework, say, analogous to
the squared error framework for density estimation, has only recently been
addressed (Chacón, 2015). The first step towards this is to identify a cluster
as a data-rich region (high density values) which is separated from another
data-rich region by a data-poor region (low density values), as introduced by
Hartigan (1975). From this arises the class of nonparametric density-based or
modal clustering approaches (Stuetzle, 2003; Li, Ray & Lindsay, 2007).

The population equivalent to a partition of a finite data set is to consider a
clustering C = {C1, . . . ,Cq} as a partition of the entire data space Rd . Equiv-
alently, such a whole-space clustering can be specified in terms of a cluster
labelling function γ : Rd→N by defining γ(xxx) = ` whenever xxx∈C`. The goal
of cluster analysis is to compute an estimate γ̂ of this cluster labelling func-
tion (or an estimate Ĉ of the partition C ) from the data. Historically many
data-based clustering algorithms were satisfied to separate a given data set
XXX1, . . . ,XXXn into clusters, i.e., to compute γ̂(XXX1), . . . , γ̂(XXXn) without having to
consider the closeness of γ̂ to γ . Whilst this suffices from a purely empirical
point of view as we have estimated the labels for all the data, it is theoretically
insufficient, as the accuracy of the estimated cluster labelling function γ̂ re-
mains unquantified, and the convergence of γ̂ to the target labelling function
γ is not guaranteed. Our first step is to define a population goal for nonpara-
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metric density-based clustering which does not involve the data sample at
hand.

6.2.1 Stable/unstable manifolds

Suppose that ξξξ is a critical point of a function f . The basin of attraction of ξξξ

is defined as the set of all points which converge to ξξξ by following the ascent
paths determined by the gradient of f . ‘Basin of attraction’ is a term borrowed
from dynamical systems analysis and it is more common to employ instead
‘stable manifold’ in the context of statistical data analysis. The definition of
a stable manifold of a critical point ξξξ of f is

W s
+(ξξξ ) = {xxx : lim

t→∞
ϕϕϕxxx(t) = ξξξ} (6.1)

where ϕϕϕxxx :R→Rd is the parametric form of the curve, indexed by xxx, which is
the solution to the initial value problem involving the positive density gradient
flow: (d/dt)ϕϕϕxxx(t) = D f (ϕϕϕxxx(t)), ϕϕϕxxx(0) = xxx.

Chacón (2015) observed that this stable manifold of the positive gradi-
ent is equivalent to the unstable manifold of the negative gradient W u

−(ξξξ ) =
{xxx : limt→−∞ bbbxxx(t) = ξξξ} where bbbxxx : R→ Rd is a solution to the initial value
problem (d/dt)bbbxxx(t) = −D f (bbbxxx(t)), bbbxxx(0) = ξξξ ; i.e., W s

+(ξξξ ) = W u
−(ξξξ ). The

unstable manifold has a physical interpretation as the region that is covered
by the trajectories under the action of gravity of a water droplets, which orig-
inate from a continuous source located directly above the local mode, over a
surface that is described by f . For statistical clustering, the stable manifold
parametrisation is preferred.

The population goal for nonparametric density-based clustering is defined
in terms of the stable manifolds of the q modes ξξξ 1, . . . ,ξξξ q of the density f .
The population goal of modal clustering is C = {C1, . . . ,Cq}, where C` =
W s

+(ξξξ `) for `= 1, . . . ,q, and the induced cluster labelling function is

γ(xxx) =
q

∑
`=1

`111{xxx ∈W s
+(ξξξ `)}. (6.2)

That is, a candidate point xxx is assigned the label of the stable manifold in
which it is located. Thom’s theorem ensures that C indeed constitutes a well-
defined clustering of almost all of the whole space, i.e., the set of points not
contained in any of the clusters of C has null probability (Thom, 1949).

Example 6.5 To appreciate that this implicit definition does correspond to
an intuitive understanding of clusters, consider the Trimodal III normal mix-
ture density from Section 3.8. Figure 6.5(a) shows its contour plot with



6.2. DENSITY-BASED CLUSTERING 137

the 10%, 30%, 50%, 70% and 90% contours. The three local modes ξξξ 1 =
(−0.998,0.002),ξξξ 2 = (0.990,1.153),ξξξ 3 = (1.000,−1.120) are the orange
points. They are very close but not exactly the same as the means of the
individual mixture components. Figure 6.5(b) shows the three stable mani-
folds corresponding to these modes as the green, purple and blue regions.
The density gradient ascent flows are represented in the quiver plot by the
black arrows with the arrow head size indicating the relative magnitude of
the gradient. The extent of each of the stable manifolds consists of all those
points whose gradient ascent flow terminates at the same local mode. In turn,
their boundaries (solid black lines) are made of those points whose destination
through the flow lines are the two existing saddle points of this density (not
shown). From this cluster partition {W s

+(ξξξ 1),W
s
+(ξξξ 2),W

s
+(ξξξ 3)}, it is straight-

forward to define the cluster label function γ . �

(a) (b)

Figure 6.5 Stable manifolds and population cluster partition for the trimodal normal
mixture density. The local modes ξξξ 1 = (−0.998,0.002),ξξξ 2 = (0.990,1.153),ξξξ 3 =
(1.000,−1.120) are the orange points. (a) Contour plot of the density function with
10, 30, 50, 70, 90% contours. (b) Stable manifolds. The black arrows are the gradient
ascent flows. The stable manifolds {W s

+(ξξξ 1),W
s
+(ξξξ 2),W

s
+(ξξξ 3)} are the green, purple

and blue regions.

6.2.2 Mean shift clustering

Mean shift clustering is a clustering algorithm, introduced by Fukunaga &
Hostetler (1975), that is designed to estimate the population modal clustering
defined through these stable manifolds. For a candidate point xxx, the mean shift
recurrence relation is

xxx j+1 = xxx j +
AD f (xxx j)

f (xxx j)
(6.3)
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for a given positive-definite matrix A, for j ≥ 1 and xxx0 = xxx, and the output
from Equation (6.3) is the sequence {xxx j} j≥0. Equation (6.3) can be easily
recognized as a classical gradient ascent algorithm, usually employed to nu-
merically find the local maxima of a function, though using the normalized
gradient (i.e., the gradient divided by the density) to accelerate the conver-
gence in low density regions.

Suppose that ξξξ ` is the local mode to which the flow line ϕϕϕxxx(t) converges
as t → ∞; i.e., xxx ∈W s

+(ξξξ `). Then, Arias-Castro et al. (2016b) showed that
xxx j → ξξξ ` as j→ ∞ for the unnormalised mean shift algorithm. These authors
also asserted that the polygonal line defined by this sequence provides a uni-
formly convergent approximation to the flow line {ϕϕϕxxx(t) : t ≥ 0}. So if we
apply the mean shift iterations to all the points in the sample space, then by
inspecting the limit values of these sequences, each point can be assigned to
one of the target population clusters {W s

+(ξξξ 1), . . . ,W
s
+(ξξξ q)} and we recover

the cluster labelling function γ .
A plug-in estimator of the mean shift recurrence is obtained if we substi-

tute the kernel estimators of the density f̂ (xxx;H) and density gradient D f̂ (xxx;H)
into Equation (6.3):

xxx j+1 = xxx j +
HD f̂ (xxx j;H)

f̂ (xxx j;H)
. (6.4)

The reason why A = H is suitable choice is elaborated in Section 6.2.3.
Given that both the target clusters and the mean shift algorithm strongly

depend on the density gradient, Chacón & Duong (2013) suggested to use
bandwidth selectors designed for gradient density estimation for the band-
width for mean shift clustering. The simulation study of Chacón & Monfort
(2014) showed that this strategy yields good results in practice. This choice
is also supported by the results in Vieu (1996) and Chen et al. (2016), where
it was shown that the optimal bandwidth choice for estimating the mode of a
density is closely related to the problem of density derivative estimation.

Example 6.6 The action of the mean shift on a regular 9×9 grid of points is
illustrated in Figure 6.6. The data sample XXX1, . . . ,XXX1000 is drawn from the Tri-
modal III normal mixture density, and are the green points. The estimated lo-
cal modes are the orange points. In Figure 6.6(a) the initial regular grid points
are the grey points. In (b), the displacement of this grid after a single iteration
is shown, where the points farthest away from the local modes have shifted the
most. In (c), after 10 iterations, we observe that initially, regularly spaced grid
points are migrating along the gradient ascent paths. In (d), after 45 iterations,
even the initially distant grid points have converged to a local mode. The three
estimated modes ξ̂ξξ 1 = (−0.87,0.04), ξ̂ξξ 2 = (0.91,1.04), ξ̂ξξ 2 = (1.12,−1.30)
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(a) j = 0 (b) j = 1

(c) j = 10 (d) j = 45

(e)

Figure 6.6 Mean shift recurrence for the trimodal normal mixture density. The n =

1000 random data sample are the green points. The estimated local modes ξ̂ξξ 1 =

(−0.87,0.04), ξ̂ξξ 2 =(0.91,1.04), ξ̂ξξ 2 =(1.12,−1.30) are the orange points. (a) Initial
regular 9×9 grid at j = 0. (b) Displacement of the grid after j = 1 iteration of the
mean shift recurrence. (c) Displacement after j = 10 iterations. (d) Displacement
after j = 45 iterations. (e) Estimated cluster partitions are the green, purple and
blue regions.
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are the orange points. If we apply the mean shift recurrence to all the points in
the sample space, then we obtain estimates of the population clusters/stable
manifolds {W s

+(ξ̂ξξ 1),W
s
+(ξ̂ξξ 2),W

s
+(ξ̂ξξ 3)}, displayed as the green, purple and

blue regions in Figure 6.6(e). �

For many data analysis applications, it is not common to cluster the entire
data space as in Figure 6.6(e), rather it is more usual to cluster a given data
set, as in the following example.

Example 6.7 We apply the mean shift clustering to the daily tempera-
ture data, with the plug-in bandwidth for the density gradient ĤPI,1 =
[1.04,0.98;0.98,1.69], with an additional constraint that the minimum
cluster size is b0.05nc = 1095. In Figure 6.7 are the estimated clus-
ter labels of the data XXX1, . . . ,XXXn, in green {XXX i : γ̂(XXX i) = 1} and purple
{XXX i : γ̂(XXX i) = 2}. The estimated local modes ξ̂ξξ 1 = (8.7◦C,16.4◦C), ξ̂ξξ 2 =
(15.5◦C,33.7◦C) are shown as the two orange points. The cluster sizes are
n1 = 13367(61.0%),n2 = 8541(39.0%). The members of the mean shift clus-
ters do not form (intersections of) symmetric ellipsoids, demonstrating the
flexibility of the mean shift to detect asymmetric, non-ellipsoidal clusters.
Moreover, the mean shift does not require that the number of clusters to be
specified before the cluster discovery can commence: the estimated number
of clusters emerges naturally from the estimated local modes. �

Figure 6.7 Mean shift clusters for the daily temperature data. The estimated clusters
are in green (n1 = 13367), and purple (n2 = 8541). The cluster modes are the orange
points. The bandwidth is ĤPI,1 = [1.04,0.98;0.98,1.69].

Example 6.8 For the stem cell data which consists of mixed cell popula-
tions from the donor and the recipients, the goal is to identify the pres-
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ence of monocytes/granulocytes in the recipient which indicates a success-
ful graft. An elevated level of the CD45.1 (denoted CD45.1+) indicates a
donor cell and CD45.2+ a recipient cell, and Ly65+Mac1+ indicates a mono-
cyte/granulocyte. Since all three fluorochromes are simultaneously required
to identify recipient monocytes/granulocytes, a complete 3-dimensional anal-
ysis is required.

Whilst a 3-dimensional scatter plot can already give visual cues on the
point sub-cloud that corresponds to the recipient monocytes/granulocytes,
this task is clarified, and more importantly automated, using the mean
shift cluster labels displayed in Figure 6.8 for mouse subject #12.
Our mean shift analysis was carried out with the bandwidth ĤPI,1 =
[2323,−1397,−211;−1397,1849,69.7,−211,69.7,3701]. There are 5 clus-
ters, coloured in green, blue, purple, red and orange, which correspond well
to the 5 different cell types as identified by biological experts (Aghaeepour
et al., 2013, Figure 3(a–b)). The cluster counts are n1 = 2478,n2 = 2591,n3 =
105,n4 = 555,n5 = 507. Of the most interest are blue and green clusters
which are comprised of CD45.2+ recipient cells. Of these two, the blue clus-
ter represents monocytes/granulocytes as it is also Ly65+Mac1+. The pres-
ence of this CD45.2+/Ly65+Mac1+ blue cluster indicates that the graft oper-
ation was successful for this mouse.

Figure 6.8 Mean shift clusters for the stem cell data. The 5 estimated cluster labels
of mouse subject #12 are in green (n1 = 2478), blue (n2 = 2591), purple (n3 = 105),
red (n4 = 555) and orange (n = 507), corresponding to the 5 different cell types. The
bandwidth is ĤPI,1 = [2323,−1397,−211;−1397,1849,69.7,−211,69.7,3701].

Again, the unbalanced cluster sizes, as the smallest cluster n3 = 105 is
approximately 25 times smaller than the two largest clusters n1 = 2478,n2 =
2591, do not pose difficulties, for the mean shift to simultaneously find the
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different clusters. It relies on local density gradients which are robust to un-
balanced cluster sizes. �

The mean shift clustering algorithm is described in Algorithm 10. The
inputs are the data sample XXX1, . . . ,XXXn and the candidate points yyy1, . . . ,yyym
which we wish to cluster (these can be the same as XXX1, . . . ,XXXn, but this is
not required). The tuning parameters are: the bandwidth matrix H, the tol-
erance ε1 under which subsequent iterations in the mean shift update are
considered convergent, the maximum number of iterations jmax, and the
tolerance ε2 under which two close cluster centres are considered to form
a single cluster. The output is the cluster labels of the candidate points
{γ̂(yyy1), . . . , γ̂(yyym)}. Lines 1–5 correspond to gradient ascent paths in Equa-
tion (6.4), with ηηη(yyy;H) = HD f̂ (yyy;H)/ f̂ (yyy;H), which are iterated until sub-
sequent iterates are less than ε1 apart or the maximum number of iterations
jmax is reached. The output from these lines is the final iterates yyy∗1, . . . ,yyy

∗
m.

Lines 6–8 concern merging the final iterates within ε2 distance of each other
into a single cluster, thus creating a clustering of yyy∗1, . . . ,yyy

∗
m, which is then

transferred to the original data yyy1, . . . ,yyym in Line 9.

Algorithm 10 Mean shift clustering
Input: {XXX1, . . . ,XXXn},{yyy1, . . . ,yyym},H,ε1,ε2, jmax
Output: Cluster labels {γ̂(yyy1), . . . , γ̂(yyym)}
Compute gradient ascent paths

1: for ` := 1 to m do
2: repeat Iterate mean shift yyy`, j+1 := yyy`, j +ηηη(yyy`, j;H)
3: until ‖yyy`, j+1− yyy`, j‖≤ ε1 or j > jmax
4: Store final iterates yyy∗` := yyy`, j+1
5: end for

Assign same label to close final iterates
6: for `1, `2 := 1 to m do
7: if ‖yyy∗`1

− yyy∗`2
‖≤ ε2 then γ̂(yyy∗`1

) := γ̂(yyy∗`2
) end if

8: end for
Assign labels to original data

9: for ` := 1 to m do γ̂(yyy`) := γ̂(yyy∗`) end for

Reasonable choices, from simulation experiments, for the tuning param-
eters are: the iteration convergence threshold ε1 = 0.001min1≤ j≤d{IQR j}
where IQR j is the j-th marginal sample interquartile range, the threshold for
merging two cluster centres into a single cluster ε2 = 0.01max1≤ j≤d{IQR j},
and the maximum number of iterations jmax = 400. A range of these tuning
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parameters yield similar clustering results for a given the bandwidth H, and it
is this latter choice which requires more careful consideration.

The convergence of the mean-shift recurrence xxx j+1 = xxx j + ηηη(xxx j;H) in
Equation (6.4) has been studied by many authors, including Comaniciu &
Meer (2002), though it has been subsequently discovered that these incor-
rectly inferred convergence of the sequence {xxx j} j≥0. Correct results are pro-
vided, for example, by Li, Hu & Wu (2007), Aliyari Ghassabeh (2013) and
Arias-Castro et al. (2016a) in different setups.

6.2.3 Choice of the normalising matrix in the mean shift

We provide the rationale for the choice for the normalising matrix A = H
in the kernel mean shift recurrence xxx j+1 = xxx j +AD f̂ (xxx j;H)/ f̂ (xxx j;H). Since
the kernel K is spherically symmetric, it can be written as K(xxx) = 1

2 k(‖xxx‖2),
where the function k : R+→ R is known as the profile of K. Under the usual
conditions this profile is a decreasing function, so that g(x) = −k′(x) ≥ 0
for all x. Observing that DK(xxx) = −xxxg(‖xxx‖2), the kernel density gradient
estimator can be written as

D f̂ (xxx;H) = n−1
n

∑
i=1
|H|−1/2H−1(XXX i− xxx)g((xxx−XXX i)

>H−1(xxx−XXX i))

= H−1 f̃ (xxx;H)ηηη(xxx;H)

where f̃ (xxx;H) = n−1|H|−1/2
∑

n
i=1 g((xxx−XXX i)

>H−1(xxx−XXX i)), and ηηη(xxx;H) =
[∑n

i=1 XXX ig((xxx− XXX i)
>H−1(xxx− XXX i))/∑

n
i=1 g((xxx− XXX i)

>H−1(xxx− XXX i))]− xxx. As
f̃ (xxx;H) can be considered to be an unnormalised density estimator, the ratio
of the density gradient and the density is D f̂ (xxx;H)/ f̂ (xxx;H) = cH−1ηηη(xxx;H),
i.e., H−1ηηη(xxx;H) estimates (up to the constant c) the normalised density
gradient. If we set A = c−1H, the mean shift recurrence becomes xxx j+1 =
xxx j+c−1HD f̂ (xxx j;H)/ f̂ (xxx j;H) = xxx j+ηηη(xxx j). Observe that we are not required
to compute this constant c in order to use the mean shift recurrence relation,
though for the normal kernel we have c = 1.

6.3 Density ridge estimation

For data analysis, the principal components can be considered as the direc-
tions with the largest variations in the data (Mardia et al., 1979). They are
based on the singular value decomposition (SVD) of the variance of the un-
derlying random variable XXX , i.e., VarXXX = UΛΛΛU> with U = [uuu1| · · · |uuud ] ∈
Md×d and ΛΛΛ = diag(λ1, . . . ,λd) ∈Md×d , where the λ1 ≥ ·· · ≥ λd are the



144 APPLICATIONS OF DENSITY DERIVATIVES

ordered eigenvalues, and uuu1, . . . ,uuud the corresponding orthonormal eigenvec-
tors.

The p principal components become a dimension reduction technique
whenever p < d. Common choices are p = 1,2,3 as these render the d-
dimensional data susceptible to graphical exploratory analyses. We collate
the p eigenvectors associated with the p largest eigenvalues, and transform the
data point XXX i ∈Rd to XXX (p)

i =U(p)>XXX i ∈Rp where U(p) = [uuu1| · · · |uuup]∈Md×p.
Whilst principal components is a neat mathematical technique for reducing
the complexity of the data XXX i, the difficulty is the interpretation of the result-
ing XXX (p)

i , as it is not straightforward to back-transform the visualisations and
conclusions based on p principal component space to the original data space.

Example 6.9 Whilst the first principal component offers a convenient uni-
variate analysis, it can suffer from a drastic reduction in the information of the
structure of the original d-dimensional data, even for d = 2, as demonstrated
in Figure 6.9 for the severe earthquake locations. The principal component

Figure 6.9 First principal components of the earthquake data. The (longitude, lat-
itude) locations of the n = 2646 major earthquakes in the Circum-Pacific belt are
the green points. The boundaries of the tectonic plates are the solid blue curves. The
principal component directions are the solid black arrows, with lengths proportional
to their eigenvalues. The first principal components are the purple rug plot on the
horizontal axis.

directions are given by the solid black arrows, whose lengths are proportional
to their eigenvalues. The first principal components are the projections of the
locations onto the line parallel to the longer arrow. After being suitably trans-
formed, they form the purple rug plot on the horizontal axis. In the process of
reducing the bivariate data to univariate data, important spatio-geographical
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information has been lost, e.g., their 2-dimensional spatial distribution and
their relative positions with respect to the tectonic plate boundaries (the solid
blue curves). �

Principal curves, as 1-dimensional curves embedded in the d-dimensional
data space, aim to preserve more of the original data structure than the 1-
dimensional orthogonal projections that are the first principal components.
Hastie & Stuetzle (1989) proposed that the defining characteristic of a princi-
pal curve be self-consistency, i.e., for any point xxx on a principal curve, if we
collate all the points which project onto xxx then the mean of all these points
coincides with xxx. These authors introduced an algorithm to construct self-
consistent principal curves. Initialising with the first principal components,
then a procedure of projection and averaging is iterated until self-consistency
is achieved. To avoid overfitting in this projection/averaging procedure, a reg-
ularisation penalty is introduced to impose sufficient smoothness in the result-
ing principal curve. The intuitiveness of self-consistent principal curves has
ensured that it has formed the basis of many of the subsequent refinements in
principal curve estimation, despite, as Hastie & Stuetzle (1989) themselves
admit, that their procedure is not guaranteed to be convergent as it is not in-
formed by a sufficiently rigorous statistical framework.

More recently, Ozertem & Erdogmus (2011) proposed an alternative char-
acterisation of principal curves as the ridges of the density function. A ridge
is a generalisation of a mode for filament structures like those found in the
earthquake data. Whilst Ozertem & Erdogmus (2011) and subsequent au-
thors replace the self-consistent curves in the definition of principal curves
with density ridges, in order to avoid adding to the confusion of these two
distinct mathematical quantities, we denote the latter only as density ridges.

Suppose that at an estimation point xxx the Hessian matrix of the density
H f (xxx) is of full rank d such that there are no repeated or zero eigenvalues. Let
λ1(xxx)> · · ·> λd(xxx) be the ordered eigenvalues of H f (xxx), and uuu1(xxx), . . . ,uuud(xxx)
be the corresponding orthonormal eigenvectors. As the density Hessian ma-
trix is negative definite (all eigenvalues are negative) near a ridge, then we fo-
cus on the smallest eigenvalues for the density ridge in contrast to the largest
eigenvalues for the principal components. The singular value decomposition
of the density Hessian is H f (xxx) = U(xxx)ΛΛΛ(xxx)U(xxx)>, and the eigenvectors
matrix is partitioned as U(xxx) = [U(1)|U(d−1)] where U(1)(xxx) = uuu1(xxx) ∈ Rd

and U(d−1)(xxx) = [uuu2(xxx)| · · · |uuud(xxx)]Md×(d−1). Let the 1-dimensional projected
density gradient D f(d−1) : Rd → R be

D f(d−1)(xxx) = U(d−1)(xxx)U>(d−1)(xxx)D f (xxx).
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Genovese et al. (2014) define the density ridge P as consisting of all the points
with zero projected gradient and (d−1) negative eigenvalues

P≡ P( f ) = {xxx : ‖D f(d−1)(xxx)‖ = 0,λ2(xxx), . . . ,λd(xxx)< 0}.

Therefore xxx lies on the density ridge P if its density gradient D f (xxx) is parallel
to the first eigenvector uuu1(xxx), and is orthogonal to the other (d−1) eigenvec-
tors uuu2(xxx), . . . ,uuud(xxx) of its density Hessian H f (xxx). Equivalently the density
ridge is P = {xxx : limt→∞ aaa(t) = xxx} where aaa : R→ Rd is an integral curve
which is a solution of the differential equation (d/dt)aaa(t) = D f(d−1)(aaa(t)).
This recalls the integral curve parametrisation of the stable manifold of a lo-
cal mode ξξξ in Equation (6.1): W s

+(ξξξ ) = {xxx : limt→∞ aaa(t) = ξξξ} where aaa is a
solution of the initial value problem (d/dt)aaa(t) = D f (aaa(t)), aaa(0) = xxx.

Whilst the change from self-consistent curves to density ridges may ap-
pear to be innocuous, the latter lead to a more rigorous estimation framework.
Ozertem & Erdogmus (2011) observed that since the mean shift is the basis
for the estimating the gradient ascent paths of the stable manifold, then it
could be adapted for estimating the density ridge. These authors proposed to
replace the density gradient D f̂ in the mean shift recurrence by the projected
density gradient D f̂(d−1)(xxx;H) = U(d−1)(xxx;H)U(d−1)(xxx;H)>D f̂ (xxx;H) where
U(d−1)(xxx;H) is derived from the singular value decomposition of the den-
sity Hessian estimator H f̂ (xxx;H) = U(xxx;H)ΛΛΛ(xxx;H)U(xxx;H)>. The mean shift
recurrence for the projected gradient is therefore

xxx j+1 = xxx j +U(d−1)(xxx j;H)U(d−1)(xxx j;H)>ηηη(xxx j;H) (6.5)

where ηηη(xxx;H) =
∑

n
i=1 XXX ig((xxx−XXX i)

>H−1(xxx−XXX i))

∑
n
i=1 g((xxx−XXX i)

>H−1(xxx−XXX i))
− xxx is the non-projected

mean shift from Equation (6.4).
In comparison to self-consistent principal curves, density ridges have two

main statistical advantages. First, the latter inherit the smoothness of the un-
derlying density, and so no additional regularisation penalty is required as for
the former to avoid overfitting. Second, as the mean shift is a convergent al-
gorithm, then the estimated density ridge P̂ converges to its target P, whereas
convergence is not guaranteed for the estimated self-consistent curves.

Example 6.10 The density ridge estimate for the earthquake data computed
from the mean shift of the projected density gradient in Equation (6.5) is
illustrated in Figure 6.10. The density ridge estimates are the solid purple
curves. In contrast to the rug plot of the first principal components in Fig-
ure 6.9, the density ridges retain more spatial information of the structure
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of the data. Whilst the scatter plot already indicates that the earthquake lo-
cations follow the tectonic plate boundaries, the density ridges offer a more
compelling, less cluttered visualisation of this spatio-geographic relationship.
The bandwidth utilised is the plug-in matrix for the second density derivative
ĤPI,2 = [74.6,−8.53;−8.53,13.3] since the density Hessian should be opti-
mally estimated. �

Figure 6.10 Density ridge estimate for the earthquake data. The density
ridges are the solid purple curves, based on the plug-in bandwidth ĤPI,2 =
[74.6,−8.53;−8.53,13.3].

Algorithm 11 details the construction of the density ridge estimators in
Figure 6.10, as introduced by Genovese et al. (2014). The inputs are the data
sample XXX1, . . . ,XXXn and the grid of estimation points xxx1, . . . ,xxxm which cover the
data range. The tuning parameters are: the bandwidth matrix H, the tolerance
ε1, under which subsequent iterations in the mean shift update are considered
convergent, the maximum number of iterations jmax, and the probability con-
tour threshold τ under which the iterations are not carried out. The output is
the estimated density ridge set P̂. Line 2 verifies that the estimated density f̂
at an estimation grid point xxx` is higher than the 100τ% probability contour
level f̂τ . If so, then Lines 3–8 iterate the projected density gradient mean shift
recurrence until subsequent iterates are less than ε1 apart or the maximum
number of iterations jmax is reached. Line 9 then increments the density ridge
set P̂ by adding the final iterate xxx`, j+1 to it.

For 2-dimensional data, an m = 1512 grid of estimation points is com-
monly used. The probability threshold τ can be set to a high value to avoid
discarding too many grid points, whilst still reducing the time complex-
ity, e.g., for the earthquake data, only 6935 of the m = 22801 grid points
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Algorithm 11 Density ridge estimator
Input: {XXX1, . . . ,XXXn},{xxx1, . . . ,xxxm},H,ε1, jmax,τ
Output: Density ridge P̂

1: for ` := 1 to m do
2: if f̂ (xxx`;H)> f̂τ then
3: repeat
4: Compute density Hessian estimate H f̂ (xxx`, j)
5: Perform SVD of H f̂ (xxx`, j) := U(xxx`, j)ΛΛΛ(xxx`, j)U(xxx`, j)>

6: Collate (d−1) eigenvectors with smallest eigenvalues
U(d−1)(xxx`, j) = [uuud−1(xxx`, j)| · · · |uuud(xxx`, j)]

7: Iterate projected mean shift
xxx`, j+1 := xxx`, j +U(d−1)(xxx`, j)U(d−1)(xxx`, j)>ηηη(xxx`, j;H)

8: until ‖xxx`, j+1− xxx`, j‖≤ ε1 or j > jmax
9: Increment P̂ := P̂∪{xxx`, j+1}

10: end if
11: end for

on [70,310]× [−70,80] exceed f̂0.99. The iteration convergence threshold
ε1 = 0.001min1≤ j≤d{IQR j} where IQR j is the j-th marginal sample in-
terquartile range, and the maximum number of iterations jmax = 400, are the
same as for the mean shift clustering in Algorithm 10.

For the selection of the bandwidth H, Ozertem & Erdogmus (2011) and
Genovese et al. (2014) utilised scalar bandwidths of class A optimally de-
signed for f̂ . Using the unconstrained MISE-optimal bandwidth for the r-
th density derivative H = O(n−2/(d+2r+4)) from Section 5.6, the Hausdorff
distance between the target density ridge P and its kernel estimate P̂ is
Haus(P, P̂) = O(n−2/(d+2r+4)) + OP((logn)1/2n−r/(d+2r+4)), as asserted by
Genovese et al. (2014, Theorems 4–5). Using a density MISE optimal band-
width as above (i.e., r = 0), then Haus(P, P̂) = OP((logn)1/2) which is
not convergent as n → ∞. To ensure that the latter order in probability is
the dominant term but still converges to 0, we require r = 2, which yields
Haus(P, P̂) = OP((logn)1/2n−2/(d+8)). This justifies our proposal to employ
an optimal selector for the density second derivative estimator D⊗2 f̂ , e.g.,
ĤPI,2.

A further advantage of density ridges is that their extension as p-
dimensional hyper-ridges is straightforward, unlike for self-consistent princi-
pal curves. Given the singular decomposition H f (xxx) = U(xxx)ΛΛΛ(xxx)U(xxx)>, the
eigenvectors matrix is partitioned as U(xxx) = [U(p)|U(d−p)] where U(p)(xxx) =
[uuu1(xxx)| · · · |uuup(xxx)] ∈Md×p and U(d−p)(xxx) = [uuup+1(xxx)| · · · |uuud(xxx)] ∈Md×(d−p).
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The projected density gradient is D f(d−p)(xxx) =U(d−p)(xxx)U(d−p)(xxx)>D f (xxx)∈
Rd−p. Then the p-dimensional density ridge Pp consists of all the points
with zero projected gradient and (d − p) negative eigenvalues: Pp = {xxx :
‖D f(d−p)(xxx)‖ = 0,λp+1(xxx), . . . ,λd(xxx) < 0}. This density hyper-ridge Pp has
an intrinsic dimension p and cannot be further reduced in a lower dimensional
set without losing important information (Ozertem & Erdogmus, 2011).

6.4 Feature significance

Feature significance denotes the suite of formal inferential methods utilised in
conjunction with exploratory data analytic methods, as introduced by Chaud-
huri & Marron (1999) and Godtliebsen et al. (2002). In this context, a ‘fea-
ture’ refers to an important characteristic of the density function f , such as a
local extremum. We focus on modal regions as these are data-rich regions of
interest, and which were investigated in Section 6.1 as globally thresholded
level sets of the density or the summary density curvature function. Here we
characterise the modal regions in terms of the local significance tests for the
density curvature function. At each estimation point xxx, let the local null hy-
pothesis be

H0(xxx) : ‖D⊗2 f (xxx)‖= 0.

The significant modal region is the rejection region, i.e., the zone where the
density curvature is significantly non-zero, with the additional condition of
negative definiteness of the density Hessian to ensure a local mode rather
than another type of local extremum:

M≡M( f ) = {xxx : reject H0(xxx),H f (xxx)< 0}. (6.6)

We focus on this characterisation of a density mode via the Hessian H f rather
than the gradient D f . At first glance, the latter characterisation appears to
be simpler mathematically and computationally. A more thorough reason-
ing reveals that the rejection region for the gradient-based hypothesis test
‖D f (xxx)‖= 0 tends to increase in size to cover the entire sample space, and
hence suffers from low discriminatory power (Genovese et al., 2016).

A natural test statistic is obtained by replacing the target density curvature
D⊗2 f by its kernel estimator D⊗2 f̂ . Under the hull hypothesis, the expected
value is E{D⊗2 f̂ (xxx;H)} = D⊗2 f (xxx){1 + o(1)} = 000d + o(1)111d from Equa-
tion (5.12). From Equation (5.14), the null variance is Var{D⊗2 f̂ (xxx;H)} =
n−1|H|−1/2(H−1/2)⊗2R(D⊗2K)(H−1/2)⊗2 f (xxx){1 + o(1)}. As R(D⊗2K) =
R(vecHK) is not invertible since it contains repeated rows, we replace
it with its vector half form. Thus the null variance of vechH f̂ (xxx;H) is
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n−1|H|−1/2(H−1/2)⊗2R(vechHK)(H−1/2)⊗2 f (xxx). A suitable Wald test statis-
tic for H0(xxx) is

W (xxx) = ‖S(xxx)−1/2 vechH f̂ (xxx;H)‖2

where S(xxx) = n−1|H|−1/2(H−1/2)⊗2R(vechHK)(H−1/2)⊗2 f̂ (xxx;H) is a plug-
in estimator of the null variance. Duong et al. (2008) asserted that ker-
nel density derivative estimators are pointwise asymptotically normal, so
S(xxx)−1/2 vechH f̂ (xxx;H) is approximately standard normal N(000d∗ ,Id∗), since
the null expected value is E{vechH f̂ (xxx;H)} = 000d∗ + o(1)111d∗ , where d∗ =
1
2 d(d + 1) is the length of the vector half of a d× d matrix. The asymptotic
null distribution of W (xxx) follows immediately as approximately chi-squared
with d∗ degrees of freedom,

As the estimation points form a grid, so this sequence of local hypoth-
esis tests are highly serially correlated. To adjust for this serial correlation,
let the p-value from the local hypothesis test H0(xxx) at significance level
α be P(W (xxx) > χ2

d∗(1− α)). Let p(1) ≤ ·· · ≤ p(m) be the order statistics
of these p-values for the m estimation points, with their corresponding hy-
potheses H0,(1), . . .H0,(m). The decision rule is to reject all the hypotheses
H0,(1), . . .H0,( j∗) where j∗ = argmax1≤ j≤m{p( j) ≤ α/(m− j+1)}. Hochberg
(1988) demonstrated that the overall level of significance of this decision rule
is α . This testing procedure detects all departures from the null hypothesis
of a zero second density derivative, so the estimator of the significant modal
regions M is M̂≡ M̂( f̂ ) = {xxx : reject H0(xxx),H f̂ (xxx;H)< 0}.

Example 6.11 For the daily temperature data, the significant modal regions,
at level of significance α = 0.05, are displayed as the solid orange regions in
Figure 6.11. The plug-in bandwidth matrix is ĤPI,2 = [1.44,1.42;1.42,2.46].
The boundaries of these significant modal regions M̂ are less smooth than
those of the modal regions L̂(ŝ0.25) in Figure 6.1(b), which are the superim-
posed purple dashed lines. The unsmooth appearance of the former results
from their construction from the local properties of the density curvature in
contrast to the global construction of the latter as a level set. Despite these dif-
ferently motivated constructions (local significant modal regions and global
level sets), they mostly agree with each other for this data set. �

Example 6.12 For the stem cell data, the plug-in bandwidth matrix ĤPI,2 =
[3497,−2258,−354;−2258,2930,75.4;−354,75.4,5894] produces signifi-
cant modal regions at the α = 0.05 level of significance in Figure 6.12. In con-
trast to the two modal regions of the level set L̂(ŝ0.5) in Figure 6.2(b) which
correspond only to the two most common cell types (n1 = 2478,n2 = 2591),
the significant modal regions M̂ correspond to all five different cell types,
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Figure 6.11 Significant modal region estimates for the daily temperature data at
significance level α = 0.05 (solid orange regions). The bandwidth matrix ĤPI,2 =

[1.44,1.42;1.42,2.46]. The 25% level set of the summary curvature L̂(ŝ0.25) is de-
limited by the purple dashed lines.

including the rarer cell types (n3 = 105,n4 = 555,n5 = 507). Whilst these un-
balanced subgroup sizes pose difficulties for the globally defined L̂(ŝ0.5) to
detect the lower modal regions, the locally defined significant modal region
estimates M̂ do not encounter similar difficulties.

Superimposed on the significant modal regions in Figure 6.12 are the
point clouds whose colours correspond to the mean shift clusters from Fig-
ure 6.8. There are seven significant modal regions, which is more than the
five mean shift clusters corresponding to the five cell types. The blue, orange
and red sub-point clouds correspond to a single modal region, whereas the
green and purple ones each correspond to two modal sub-regions. Even if the
significant modal regions are based on a sequential inferential procedure with
the density curvature, and the mean shift clusters are based on a recursive
estimation procedure with the density gradient, their statistical conclusions
from these data mostly agree with each other. �

The significant modal region algorithm is detailed in Algorithm 12. The
inputs are the data {XXX1, . . . ,XXXn} and the estimation grid points {xxx1, . . . ,xxxm}.
The tuning parameters are the bandwidth matrix H, the level of significance
α and the probability contour threshold τ under which the hypothesis tests
are not carried out. Lines 1–7 loop over the estimation grid points to compute
the individual Wald test statistic and p-values, for any estimation point that
is inside the level set L( f̂τ). Otherwise, there is insufficient data, so it does
not contribute to M̂. The ordered statistics of the p-values are calculated in
Line 8. In Lines 9–12, the Hochberg decision rule is applied to these ordered
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Figure 6.12 Significant modal region estimates for the stem cell data, at significance
level α = 0.05, for subject #12 (opaque orange regions). The bandwidth matrix is
ĤPI,2 = [3497,−2258,−354;−2258,2930,75.4;−354,75.4,5894]. The translucent
shells (green, blue, purple, red and orange) are the convex hulls of the 5 mean shift
clusters.

Algorithm 12 Significant modal region estimator
Input: {XXX1, . . . ,XXXn},{xxx1, . . . ,xxxm},H,α,τ
Output: Significant modal regions M̂

1: for ` := 1 to m do
2: if f̂ (xxx`;H)> f̂τ then
3: Compute density Hessian estimate H f̂ (xxx`)
4: Compute Wald test statistic W (xxx`)
5: Compute p-value P(W (xxx`)≥ χ2

d∗(1−α))
6: end if
7: end for
8: Compute order statistics of p-values
9: for ` := 1 to m do

10: Reject hypotheses H0(xxx`) using Hochberg decision rule
11: Increment M̂ := M̂∪{xxx` : H0(xxx`) is rejected,H f̂ (xxx`)< 0}
12: end for

p-values. Those estimation points where the local null hypothesis is rejected
and all eigenvalues of H f̂ are negative are then added to M̂.

Reasonable choices for the tuning parameters are the level of significance
α = 0.05, and the probability threshold τ = 0.99 to avoid discarding too many
grid points. It is the choice of the bandwidth which requires more careful
consideration. As the Wald test statistic involves D⊗2 f̂ , an appropriate data-
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based bandwidth selector is ĤPI,2 or any other of the cross validation selectors
for the second density derivative from Section 5.6.
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Chapter 7

Supplementary topics in data analysis

The chapters so far in this monograph have focused on one-sample problems,
that is, on analysing data samples drawn from a single probability distribu-
tion. In this chapter, we introduce kernel smoothing techniques in the scenar-
ios where two or more distributions are involved. Section 7.1 introduces local
significance testing for the difference between two density estimates. Sec-
tion 7.2 extends to the comparison of multiple densities in the framework of
classification/supervised learning. Section 7.3 examines deconvolution den-
sity estimation for smoothing data measured with error. Section 7.4 highlights
the role that kernel estimation can play in learning about other non-parametric
smoothing techniques, in this case, nearest neighbour estimation. Section 7.5
fills in the previously omitted mathematical details of the considered topics.

7.1 Density difference estimation and significance testing

A suitable way to compare two distributions, or the distribution of a variable
of interest between two different populations, which we denote by XXX1 and
XXX2, is by inspecting the difference of the density functions fXXX1 − fXXX2 . For
an estimation point xxx, the local null hypothesis is H0(xxx) : fXXX1(xxx) ≡ fXXX2(xxx).
This means that, under this null hypothesis, the two density values and all
their derivatives at xxx are equal. This more stringent null hypothesis than the
hypothesis of equality of functional values in Duong (2013) is required in the
sequel. We search for the regions of significant departures from a zero density
difference:

U+ ≡ U+( fXXX1 , fXXX2) = {xxx : reject H0(xxx) and fXXX1(xxx)> fXXX2(xxx)}
U− ≡ U−( fXXX1 , fXXX2) = {xxx : reject H0(xxx) and fXXX1(xxx)≤ fXXX2(xxx)}. (7.1)

These are analogous to the modal regions M as significant departures from
zero density curvature in the 1-sample feature significance in Section 6.4.

Let the density difference be u(xxx) = fXXX1(xxx)− fXXX2(xxx). For the data samples

155
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{XXX1,1, . . . ,XXX1,n1} and {XXX2,1, . . . ,XXX2,n2}, a suitable test statistic is

W (xxx) = û(xxx;H1,H2)
2/S(xxx)2

where û(xxx;H1,H2)= f̂XXX1(xxx;H1)− f̂XXX2(xxx;H2) is the plug-in estimator of u and
S(xxx)2 = R(K)[n−1

1 |H1|−1/2 f̂XXX1(xxx;H1)+n−1
2 |H2|−1/2 f̂XXX2(xxx;H2)] is the plug-in

estimator of the variance of û. Duong (2013) asserted that, since each of the
kernel estimators f̂XXX1 , f̂XXX2 are asymptotically normal, then their difference
inherits this property. Moreover, the expected value is E{û(xxx;H1,H2)} =
u(xxx) + 1

2 m2(K)[D⊗2 fXXX1(xxx)
> vecH1 − D⊗2 fXXX2(xxx)

> vecH2] + o(‖vec(H1 +

H2)‖), and the variance is Var{û(xxx;H1,H2)} = R(K)[n−1
1 |H1|−1/2 fXXX1(xxx) +

n−1
2 |H2|−1/2 fXXX2(xxx)]+o(n1|H1|−1/2 +n−1

2 |H2|−1/2). Under the null hypothe-
sis, fXXX1(xxx) = fXXX2(xxx) = f (xxx) and D⊗2 fXXX1 = D⊗2 fXXX2 = D⊗2 f (xxx), so the null
sampling distribution of û(xxx) is asymptotically normal with mean 0 and vari-
ance [n−1

1 |H1|−1/2 + n−1
2 |H2|−1/2]R(K) f (xxx), i.e., W (xxx) is asymptotically χ2

with 1 degree of freedom.
The goal is to simultaneously test the hypotheses H0(xxx j), j = 1, . . . ,m,

for a grid {xxx1, . . . ,xxxm} of m estimation points. We apply the Hochberg de-
cision rule (Hochberg, 1988) introduced in Section 6.4 to adjust for the se-
rially correlated local hypothesis tests. Let the p-value from the local hy-
pothesis test H0(xxx j) at significance level α be p j = P(W (xxx j) > χ2

1 (1−α)).
Let p(1) ≤ ·· · ≤ p(m) be the order statistics of these p-values for the m es-
timation points, with their corresponding hypotheses H0,(1), . . .H0,(m). The
decision rule is to reject all the hypotheses H0,(1), . . .H0,( j∗) where j∗ =
argmax1≤ j≤m{p( j) ≤ α/(m− j+ 1)}. The estimators of the significant den-
sity difference regions U+,U− are

Û+ = {xxx : reject H0(xxx) and f̂XXX1(xxx;H1)> f̂XXX2(xxx;H2)}
Û− = {xxx : reject H0(xxx) and f̂XXX1(xxx;H1)≤ f̂XXX2(xxx;H2)}.

Example 7.1 Figure 7.1 illustrates these estimated density difference regions
Û+, Û− for the stem cell data from the control (subject #6) and treatment
(subject #12) patients, for an α = 0.05 level of significance. The purple re-
gions are Û+ where the density of control cells is significantly greater than the
treatment cells, and the orange regions Û− where the density of control cells
is significantly less than the treatment cells. The most crucial sub-region is
the CD45.1−/CD45.2+/Ly65+Mac1+ orange region as it indicates that there
are significantly more monocytes/granulocytes for the treatment subject than
the control, indicating that the graft operation was successful.

The Hochberg decision rule controls the Type I error (false positive
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Figure 7.1 Significant density difference region for the stem cell data, at
significance level α = 0.05, for subjects #6 (control) and #12 (treat-
ment). The purple regions are Û+ (control > treatment) and the or-
ange regions Û− (control < treatment). The plug-in bandwidth matrices are
Ĥ1 = [117.4,−118.4,31.9;−118.4,158.7,−39.9;31.9,−39.9,1576.2] and Ĥ2 =
[249.9,−223.3,−70.5;−223.3,258.6,−1.3;−70.5,−1.3,939.7].

rate) to be the specified level of significance α . So it is instructive to ex-
amine the true negative rate and true positive rate (power) of these signif-
icant density difference regions. For the stem cell data, subject #5 is an-
other control, and subject #9 is another treatment subject. The significant
density difference regions for subjects #6 versus #5, and for subjects #9
versus #12 are shown in Figure 7.2. For the negative and positive controls
in Figure 7.2(a)–(b), there are no significant density difference regions for
CD45.1−/CD45.2+/Ly65+Mac1+, implying that there are no significant dif-
ferences in the graft operation success between two control subjects or be-
tween two treatment subjects. �

Algorithm 13 details the steps to compute the significant density dif-
ference regions Û+, Û−. The inputs are the data {XXX1,1, . . . ,XXX1,n1} (control),
{XXX2,1, . . . ,XXX2,n2} (treatment), and the estimation grid points {xxx1, . . . ,xxxm}. The
tuning parameters are the bandwidth matrices H1,H2, and the level of signif-
icance α . Lines 1–5 loop over the estimation grid points to compute the indi-
vidual Wald test statistics and p-values. In Lines 6–10, the Hochberg decision
rule is applied to the ordered p-values. For those estimation points where the
local null hypothesis is rejected: (a) they are added to Û+ if the control den-
sity is greater than the treatment density, or (b) they are added to Û− if the
control density is less than the treatment density.

Suitable bandwidth selectors for these density difference regions are the
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(a) (b)

Figure 7.2 Target negative and positive significant density difference regions for
the stem cell data. The purple regions are Û+( f̂XXX1 > f̂XXX2) and the orange regions
Û−( f̂XXX1 < f̂XXX2). (a) Negative control (true negative) between two control subjects #6
and #5. (b) Positive control (true positive) between two treatment subjects #9 and
#12.

Algorithm 13 Significant density difference region estimator
Input: {XXX1,1, . . . ,XXX1,n1},{XXX2,1, . . . ,XXX2,n2},{xxx1, . . . ,xxxm},H1,H2,α
Output: Significant density difference regions Û+, Û−

1: for ` := 1 to m do
2: Compute density estimates f̂XXX1(xxx`), f̂XXX2(xxx`)
3: Compute Wald test statistic W (xxx`)
4: Compute p-value P(W (xxx`)≥ χ2

1 (1−α))
5: end for
6: for ` := 1 to m do
7: Reject hypotheses H0(xxx`) using Hochberg decision rule
8: Increment Û+ := Û+∪{xxx` : H0(xxx`) is rejected, f̂XXX1(xxx`)> f̂XXX2(xxx`)}
9: Increment Û− := Û−∪{xxx` : H0(xxx`) is rejected, f̂XXX1(xxx`)< f̂XXX2(xxx`)}

10: end for

bandwidths for the density function. These ensure that û(xxx;H1,H2) and
S(xxx)2 = R(K)[n−1

1 |H1|−1/2 f̂XXX1(xxx;H1) + n−1
2 |H2|−1/2 f̂XXX2(xxx;H2)] are consis-

tent estimators of u(xxx) and Var{û(xxx;H1,H2)}. Hence the test statistic W (xxx) =
û(xxx;H1,H2)

2/S(xxx)2 asymptotically converges to its target χ2
1 distribution. We

have employed the plug-in selectors ĤPI to produce Figures 7.1–7.2, though
any of those from Chapter 3 could also have been employed instead.
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7.2 Classification

Density difference analysis is a useful visual tool for comparing two data
samples, though it is difficult to extend to multiple sample comparisons as it
relies heavily on the binary opposition of the relative density heights.

In the case of multiple sample comparisons, we know that our data come
from q different populations (or classes or groups), which are identified by
the labels {1,2, . . . ,q}. We observe a d-dimensional random vector XXX that
records some features of the individuals and we have a labelled sample
(XXX1,Y1), . . . ,(XXXn,Yn) from the random pair (XXX ,Y ) ∈Rd×{1, . . . ,q}, with the
label Yi meaning that XXX i is associated with the population Yi. The goal is to
classify a new individual with observed features xxx to the most suitable group.

A function γ : Rd → {1, . . . ,q} that determines how a feature vector xxx is
assigned to a population γ(xxx) is called a classifier. The performance of a given
classifier γ on the pair (XXX ,Y ) is most commonly measured by the probability
of making a classification error, or the misclassification rate MR = P

(
γ(XXX) 6=

Y ). Within this framework, it is well known that the optimal classifier is γBayes,
the so-called Bayes rule, which assigns xxx to the group from which it is most
likely to have been drawn, i.e., γBayes(xxx) = argmax j∈{1,...,q}P(Y = j|XXX = xxx

)
(Devroye et al., 1996). This rule can be explicitly written in terms of the class-
conditional densities and prior class probabilities. If we denote f j to be the
density of the conditional random variable XXX |Y = j (or the density of XXX within
the j-th class), and by w j = P(Y = j) the prior probability of XXX belonging to
the j-th class, then

γBayes(xxx) = argmax
j∈{1,...,q}

w j f j(xxx). (7.2)

The misclassification rate induced by the Bayes rule is known as the Bayes
rate or error, as it is the minimal rate amongst all possible classifiers.

This data setup closely resembles that of clustering considered in Sec-
tion 6.2, although with some notable differences. In classification, the number
of populations is known in advance, while the number of groups is not known
a priori in cluster analysis. Moreover, whilst the groups in modal clustering
analysis are associated with a data-rich regions, the groups in classification
are defined by the observed group labels and these latter are not necessarily
based on these stable/unstable manifolds of local modes of the data density
function. The data employed for classification provides the label indicating
the corresponding population, which is not available for cluster analysis. In
the machine learning community, classification is cast as a supervised learn-
ing problem and cluster analysis as unsupervised learning.

Since the Bayes rule depends on the unknown class probabilities
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and class-conditional densities, in practice these are estimated from the
data (XXX1,Y1), . . . ,(XXXn,Yn) to obtain a data-based classification rule γ̂(xxx) =
argmax j∈{1,...,q} ŵ j f̂ j(xxx). For this reason, such data are also called training
data. This estimated rule can then be used to classify a new set of unlabelled
points xxx1, . . . ,xxxm, which are known as the test data. These test data can be the
same as the training data, though we emphasise that if the goal is to approx-
imate the misclassification error of γ̂ , it is highly advisable to use test data
which are independent of the training data, to avoid error under-estimation
(Devroye et al., 1996).

The class probabilities are usually estimated from the sample proportions
of data in each population; that is, ŵ j = n j/n, where n j = ∑

n
i=1 111{Yi = j} is

the number of observations belonging to the j-th population. It is the dif-
ferent methodologies employed to estimate the class-conditional densities
which give rise to the different types of classifiers. The widely used para-
metric linear and quadratic classifiers replace the unknown densities in Equa-
tion (7.2) respectively by normal densities with a common variance matrix or
with different variance matrices. In the context of kernel smoothing, the class-
conditional densities are naturally estimated using kernel estimators. Thus the
kernel classifier is

γ̂(xxx)≡ γ̂(xxx;H1, . . . ,Hq) = argmax
j∈{1,...,q}

ŵ j f̂ j(xxx;H j) (7.3)

where f̂ j is the kernel density estimator based on the data drawn from the j-th
population.

Example 7.2 An illustration of partitioning and classification using the ker-
nel classifier in Equation (7.3) into three groups is given in Figure 7.3 for
the cardiotocographic data. Three expert obstetricians classified the training
data into three groups according the health status of the foetus: normal foetus
(n1 = 412, green), suspect (n2 = 83, orange), pathological (n3 = 37, purple)
as illustrated in the scatter plot in Figure 1.5(a). From these training data, we
construct the individual density estimates and the kernel classifier, whose in-
duced partition is displayed in Figure 7.3(a). This classification rule is then
applied to the test data set (m = 1594) to obtain the estimated group labels
γ̂ , which are displayed in Figure 7.3(b). The frequencies of the estimated
foetal states in the test data are: normal (m1 = 1339, green points), suspect
(m2 = 178, orange), pathological (m3 = 77, purple). �

The algorithm for kernel classification analysis is Algorithm 14. The
inputs are the training data {(XXX1,Y1), . . . ,(XXXn,Yn)}, and the test data
{xxx1, . . . ,xxxm}. The tuning parameters are the bandwidth matrices H1, . . . ,Hq.
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(a) (b)

Figure 7.3 Classification for the foetal cardiotocographic test data. The x-axis is the
abnormal short-term variability (percentage), and the y-axis is the mean of the car-
diotocographic histogram (0–255). (a) Partition induced by classification rule com-
puted from training data (n = 532): normal (green), suspect (orange), pathological
(purple). (b) Estimated test group labels (m = 1592): normal (m1 = 1339, green),
suspect (m2 = 178, orange), pathological (m3 = 78, purple).

Lines 1–4 loop over each of the training data samples to compute the individ-
ual density estimates and weights. Line 5 assigns the group label to the test
data according to the maximiser of the weighted density estimates.

Algorithm 14 Classification
Input: {(XXX1,Y1), . . . ,(XXXn,Yn)},{xxx1, . . . ,xxxm},H1, . . . ,Hq

Output: {γ̂(xxx1), . . . , γ̂(xxxm)}
/* training data */

1: for j := 1 to q do
2: Compute density estimate f̂ j(xxx;H j)
3: Compute sample proportion ŵ j

4: end for
/* test data */

5: for i := 1 to m do Assign group label γ̂(xxxi) end for

Example 7.3 Figure 7.3(b) displays the estimated group labels for the test
data, which can then be further scrutinised by the subject matter experts.
To evaluate the accuracy of the classifier, suppose that the expert obstetri-
cians had also classified these test data, providing the target group labels
γ(xxx1), . . . ,γ(xxxm). Then, the estimated group labels γ̂(xxx1), . . . , γ̂(xxxm) obtained



162 SUPPLEMENTARY TOPICS IN DATA ANALYSIS

automatically from the classifier could be compared to those expert-based
labels. Assuming that the misclassifications in both directions are equally
weighted, the misclassification rate can be estimated by the proportion of test
data points xxx1, . . . ,xxxm which are assigned to an incorrect group

M̂R(γ̂) = m−1
m

∑
i=1

111{γ̂(xxxi) 6= γ(xxxi)}= 1−m−1
m

∑
i=1

111{γ̂(xxxi) = γ(xxxi)}.

This misclassification rate estimate is usually too optimistic when this calcu-
lation is carried out on the training data, and a cross-validated version is pre-
ferred for more precise estimation. We are not required to carry out this cross
validation for the foetal cardiotocographic example since the test data are in-
dependent from the training data. The obtained M̂R(γ̂) = 0.136 corresponds
to the more detailed cross classification in Table 7.1. From this table, the ker-
nel classifier mostly identifies correctly the normal and pathological foetuses,
though the intermediate group of suspect ones, which are less healthy than
the normal foetuses but healthier than the pathological ones, is more difficult
to identify correctly. �

Estimated group labels
Normal Suspect Patho. Total

Target Normal 1195 45 3 1243
group Suspect 106 106 0 212
labels Patho. 38 27 74 139

Total 1339 178 77 1594

Table 7.1 Cross classification table for the foetal cardiotocographic test data. The
rows are the target group labels and columns for the estimated group labels.

It is widely acknowledged that it was precisely classification that origi-
nally motivated the development of kernel smoothing methods, as anticipated
in the visionary technical report of Fix & Hodges (1951) (later republished as
Fix & Hodges, 1989). Hand (1982) was the first monograph entirely devoted
to kernel classification, and more general references on classification tech-
niques include Devroye et al. (1996), Duda et al. (2000), or Webb & Copsey
(2011).

Hand (1982) posited bandwidth selection for classification can proceed by
selecting optimal bandwidths H1, . . . ,Hq (a) which are optimal for the indi-
vidual kernel density estimates or (b) which directly optimise the misclassifi-
cation rate, e.g., as Hall & Wand (1988) attempted for the two-class problem.
Hand (1982) recommended the former approach as (a) accurate estimates of
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the individual density functions are useful in their own right and (b) are more
likely to be useful if some accuracy measures other than the misclassification
rate are considered, and as (c) direct optimisation with respect to a misclas-
sification rate poses intractable mathematical obstacles, especially for more
than two classes. Following these recommendations, we utilised the plug-in
bandwidth matrices ĤPI, though any consistent bandwidth from Chapter 3
would also be valid choices in this sense.

Nevertheless, it is worth mentioning that more recent studies (Ghosh &
Chaudhuri, 2004; Hall & Kang, 2005; Ghosh & Hall, 2008) suggested that,
even if the optimal bandwidths that minimise the misclassification rate for
kernel classification are of the same order as for density estimation, significant
reductions in misclassification rate are possible over the MISE-optimal band-
widths for density estimation, especially for moderate-to-high dimensions.
As for the problem of level set estimation, further investigation is required to
demonstrate the gains in practice for bandwidth selectors specifically derived
from (asymptotic) misclassification rate minimisation.

7.3 Density estimation for data measured with error

For all the estimation techniques exposited up till now, it has been assumed
that the data sample XXX1, . . . ,XXXn is free of measurement error. However, in
some practical contexts we observe only a contaminated version of the data.
That is, the observations from the random variable XXX are not directly accessi-
ble, so that any statistical analysis is made on the basis of a related, observable
random variable WWW , which is a perturbation of the variable of interest XXX with a
measurement error. A naive application of the estimation techniques designed
for error-free data to the contaminated data can produce biased results which
may lead to erroneous conclusions.

Two different errors-in-variables models have been widely considered in
the literature: classical errors and Berkson errors. In the classical measure-
ment error setup, the observable variable WWW is related to the variable of inter-
est XXX by

WWW = XXX +UUU , (7.4)

where UUU represents the error variable, which is assumed to be independent of
XXX and to have a fully known distribution with density fUUU . The density fWWW of
WWW can be written as the convolution of the density fXXX of XXX and fUUU , namely
fWWW = fXXX ∗ fUUU . As fUUU is known and fWWW can be estimated from the observed
contaminated data WWW 1, . . . ,WWW n, then the goal of estimating fXXX is also known
as deconvolution as we attempt to undo the convolution action of the error
random variable UUU on XXX .
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In the alternative Berkson error setup, the model assumption is that
XXX = WWW +VVV , where now the role of the error variable is played by VVV , which
is assumed to be independent of WWW . This is the key difference with Equa-
tion (7.4), where the error was assumed to be independent of the variable of
interest XXX . If in the classical error model WWW is understood as a version of XXX
contaminated by measurement error, in the Berkson model WWW is often seen
as a proxy for XXX : it is a different variable, but linearly related to XXX . This
situation arises in experimental studies where ideally the researcher would
like to measure XXX but, for different reasons, only the surrogate WWW is accessi-
ble. A common example of this context is found in exposure studies, where
the researcher aims to study the exposure of individuals to a toxic agent, but
the exposure is measured only at certain monitoring stations. As for classical
errors, in the Berkson error model it is also possible to pose density and re-
gression estimation problems. Moreover, the proxy variable WWW in the Berkson
model can also be assumed to be observed with classical measurement error,
resulting in a model which combines both types of error. A comprehensive re-
view of nonparametric techniques for data measured with error can be found
in Delaigle (2014).

For brevity, we consider only the classical error setup for density deconvo-
lution. To appreciate how it may affect scale-related parameters, when Equa-
tion (7.4) holds, for example, the variance matrices of ΣΣΣWWW and ΣΣΣXXX of WWW and
XXX , are related by ΣΣΣWWW = ΣΣΣXXX +ΣΣΣUUU , where ΣΣΣUUU is the variance matrix of UUU . This
implies that the target unobservable data XXX1, . . . ,XXXn are always less spread
out than the contaminated data WWW 1, . . . ,WWW n.

7.3.1 Classical density deconvolution estimation

In the univariate case, the simplest deconvolution kernel density estima-
tor was first proposed by Stefansky & Carroll (1987) (later published as
Stefansky & Carroll, 1990). The first paper which treated the multivari-
ate case was Masry (1991). The fact that convolutions of density functions
are equivalent to products of characteristic functions implies that the con-
struction of density estimators typically start from the Fourier domain. Let
ϕa(ttt) =

∫
Rd exp(ittt>xxx)a(xxx)dxxx be the Fourier transform of any integrable func-

tion a : Rd → R. If a = fXXX is the density function of XXX , then the Fourier
transform of fXXX is denoted as ϕXXX rather than ϕ fXXX . Equation (7.4) implies that
ϕWWW = ϕXXX ϕUUU , so if ϕUUU(ttt) 6= 0 for all ttt ∈ Rd and ϕXXX = ϕWWW/ϕUUU is integrable,
then the inversion formula ensures that the target density fXXX can be written as

fXXX(xxx) = (2π)−d
∫
Rd

exp(−ittt>xxx)ϕWWW (ttt)/ϕUUU(ttt)dttt. (7.5)
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Any estimator ϕ̂WWW of ϕWWW such that ϕ̂WWW/ϕUUU is integrable defines an estimator
of fXXX by plugging it into Equation (7.5).

A simple estimate of ϕWWW from the observable data WWW 1, . . . ,WWW n is the em-
pirical characteristic function ϕ̂WWW (ttt) = n−1

∑
n
j=1 exp(ittt>WWW j). However, this

estimator cannot be directly used in Equation (7.5) because ϕ̂WWW/ϕUUU is not
integrable, since we have that ϕUUU(ttt)→ 0 as ‖ttt‖ → ∞ due to the Riemann-
Lebesgue lemma. This can be amended by replacing the empirical character-
istic function by the characteristic function of the kernel density estimator of
fWWW , which can be shown to be equal to ϕ̂WWW (ttt)ϕK(H1/2ttt) for a kernel K and a
bandwidth matrix H. Under the assumption that

∫
Rd |ϕK(H1/2ttt)/ϕUUU(ttt)|dttt is

finite for all H, the deconvolution kernel density estimator of fXXX is defined as

f̂dc(xxx;H) = (2π)−d
∫
Rd

exp(−ittt>xxx)ϕ̂WWW (ttt)ϕK(H1/2ttt)/ϕUUU(ttt)dttt. (7.6)

This estimator can be alternatively expressed as

f̂dc(xxx;H) = n−1
n

∑
j=1

KUUU
H (xxx−WWW j;H) (7.7)

where KUUU(xxx;H) = (2π)−d ∫
Rd exp(−ittt>xxx)ϕK(ttt)/ϕUUU(H−1/2ttt)dttt and the scal-

ing is now understood to be KUUU
H (xxx;H) = |H|−1/2KUUU(H−1/2xxx;H).

The formulation in Equation (7.7) resembles the usual form of the ker-
nel density estimator based on WWW 1, . . . ,WWW n, but using the deconvolution ker-
nel KUUU(·;H) rather than K. It can be shown that KUUU(·;H) is a real-valued
function, that it is symmetric if the error distribution is symmetric, and that∫
Rd KUUU(xxx;H)dxxx = 1 for all H, so that it has many of the properties of the

usual kernels. However, it is not a usual fixed, second order kernel since its
shape varies with H and that it may take negative values.

Following analogous calculations to the error-free case, under suitable
regularity conditions, the MISE{ f̂dc(·;H)} is asymptotically equivalent to

AMISE{ f̂dc(·;H)}= n−1|H|−1/2R
{

KUUU(·;H)
}

+ 1
4 m2(K)2{vec>R(D⊗2 f )

}
(vecH)⊗2.

The second term is the asymptotic integrated squared bias of the deconvolu-
tion density estimator f̂dc, which is the same as that for the density estima-
tor f̂ based on the unobservable error-free data. This justifies the use and the
nomenclature of the deconvolution kernel KUUU in Equation (7.7). The first term
is the asymptotic integrated variance n−1|H|−1/2R

{
KUUU(·;H)

}
; it has the same

form as its counterpart n−1|H|−1/2R(K) for the classical density estimator f̂ ,
but they can be vastly different in value.
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To better appreciate the effect of the measurement errors on the variance,
assuming that the error distribution is symmetric, it is useful to use Parseval’s
identity to write

R
{

KUUU(·;H)
}
= (2π)−d

∫
Rd

ϕK(ttt)2/ϕUUU(H−1/2ttt)2 dttt. (7.8)

This shows that the variance inflation due to measurement errors de-
pends on the tail behaviour of the characteristic function of the er-
ror distribution. For example, suppose that UUU follows a centred Laplace
distribution with variance matrix ΣΣΣ, so that ϕUUU(ttt) = (1 + ttt>ΣΣΣttt/2)−1.
Then the integrated variance of f̂dc(xxx;H) is asymptotically equivalent to
1
4 n−1|H|−1/2(2π)−d(vec>ΣΣΣ)⊗2(H−1/2)⊗4 ∫

Rd ttt⊗4ϕK(ttt)2 dttt. To balance this
term with the integrated squared bias it is necessary to take H to be of order
n−2/(d+8), resulting in an optimal MISE of order n−4/(d+8), which is slower
than the error-free rate n−4/(d+4). This reflects the added difficulty in density
estimation in the presence of data contaminated with Laplace error.

The situation is even worse under the common assumption that the er-
ror distribution is N(000,ΣΣΣ). Then, ϕUUU(ttt)−2 = exp(ttt>ΣΣΣttt), so to ensure that the
integral in Equation (7.8) is finite, it is usual to employ kernels such that
ϕK(ttt) = 0 for ‖ttt‖ ≥ 1. In this case, the optimal H can be shown to be of
order (logn)−1, resulting in a slow convergence rate of (logn)−2 for the op-
timal MISE: a detailed derivation of this can be found in Stefansky (1990).
This very slow rate is not due to the use of kernel estimators, since Carroll
& Hall (1988) showed that this is the fastest possible rate achievable by any
estimator, so it illustrates how intrinsically difficult is the problem of density
deconvolution with normal measurement errors.

In the univariate setup, many of the bandwidth selection methods for the
error-free kernel estimator have been generalised for the deconvolution esti-
mator (see Delaigle & Gijbels, 2004). In contrast, the problem of bandwidth
selection for multivariate kernel density deconvolution has been scarely ad-
dressed in the literature so far, see Youndjé & Wells (2008) for a cross valida-
tion proposal. So in the following section we present a different deconvolution
density estimator f̂wdc, for which it makes sense to use the existing error-free
bandwidth selectors.

7.3.2 Weighted density deconvolution estimation

A weighted kernel density estimator is

f̂wt(xxx;ααα,H) = n−1
n

∑
i=1

αiKH(xxx−XXX i)
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with a kernel K, a fixed bandwidth H, the weights αi are non-negative and
α1 + · · ·+αn = n, and ααα = (α1, . . . ,αn) ∈ Rn. This weighted density estima-
tor was originally introduced with the aim of bias reduction for uncontami-
nated data XXX1, . . . ,XXXn by Jones et al. (1995) and Hall & Turlach (1999), as
an alternative to the methodologies examined in Chapter 4. If the weights are
identically equal to 1, then f̂wt becomes the classical density estimator f̂ in
Equation (2.2). Whilst the weighted density estimator f̂wt can be used in any
context where different importance is associated with different data points,
it was Hazelton & Turlach (2009) who introduced its application to density
estimation for contaminated data. These authors defined the deconvolution
weighted density estimator as

f̂wdc(xxx;ααα,H) = n−1
n

∑
i=1

αiKH(xxx−WWW i). (7.9)

Example 7.4 The Châtelet underground train station is a major hub in the
Paris metro network and the air quality inside the station is continuously
monitored. The local transport authority has made public the hourly mean air
quality measurements from 01 January 2013 to 31 December 2016 (RATP,
2016). We focus on the concentrations of carbon dioxide CO2 (g/m3) and
of particulate matter less than 10 µm in diameter PM10 (parts per million).
The concentrations of CO2 indicate the renewal rate of fresh air, and of PM10
the potential to affect adversely respiratory health. We analyse the concentra-
tions at 8 p.m. There are n = 1300 days with fully observed measurements
for these time points, as shown in the scatter plot in Figure 7.4(a). A standard
density estimate f̂ of the 8 p.m. concentrations is illustrated in Figure 7.4(b)
and the deconvolution kernel density estimate f̂wdc in Figure 7.4(c). The stan-
dard density estimate is unimodal, whereas the deconvolution density esti-
mate is bimodal and also has narrower, smoother contours, as a consequence
of taking into account the smaller (unknown) dispersion of the true error-
free data. Both density estimates are computed with the plug-in bandwidth
ĤPI = [440.0,79.2;79.2,66.9]. �

We now elaborate an algorithm for the optimal selection of the weights
ααα , as utilised in Figure 7.4. The assertion by Hazelton & Turlach (2009),
that if f̂wdc is a reasonable estimator of fXXX then f̂wdc(·;ααα,H) ∗ fUUU would be
reasonably close to fWWW , led them to propose the discrepancy for selecting the
weight vector ααα as

ISE{ f̂wdc(·;H,ααα)}=
∫
Rd
{ f̂wdc(·;ααα,H)∗ fUUU − fWWW (xxx)}2 dxxx.
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(a)

(b) (c)

Figure 7.4 Deconvolution density estimate for the air quality data. The horizontal
axis is the CO2 concentration (g/m3) and the vertical axis is the PM10 concentration
(ppm). (a) Scatter plot of the n = 1300 data points. (b) Standard density estimate.
(c) Weighted deconvolution density estimate. The contours are the quintiles (20%,
40%, 60%, 80%). Both density estimates are computed with the same bandwidth
ĤPI = [440.0,79.2;79.2,66.9].

A plug-in estimator of this was obtained by replacing the unknown fWWW (xxx) by
its usual classical density estimator f̂WWW (xxx;H) = n−1

∑
n
i=1 KH(xxx−WWW i) as

Q(ααα) =
∫
Rd
{ f̂wdc(·;ααα,H)∗ fUUU − f̂WWW (xxx;H)}2 dxxx.

The selected weights are the minimisers α̂αα = argminααα>0,|ααα|=n Q(ααα).
Hazelton & Turlach (2009) proposed to compute the optimal selected weights
α̂αα via an interior point algorithm as the solution of the quadratic program

minimiseααα
1
2 ααα
>(Q+n−1

ηIn)−bbb>ααα
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subject to
n

∑
i=1

αi = n

αi ≥ 0, i = 1, . . . ,n (7.10)

where Q∈Mn×n with (i, j)-th entry n−2(KH∗KH∗ fUUU ∗ fUUU)(WWW i−WWW j), bbb∈Rn

with i-th coordinate n−2
∑

n
j=1(KH ∗KH ∗ fUUU)(WWW i−WWW j) and η is a regulari-

sation parameter. Suppose that the observed data WWW 1, . . . ,WWW n are partitioned
into q classes {C1, . . . ,Cq} and that f̂wdc,−γ(i) is the weighted deconvolution
density estimator based on the reduced sample which excludes all the data
with the same class label γ(i) as WWW i. These authors recommend setting the
value of the regularisation parameter η̂ as the minimiser of a q-fold cross
validation criterion

CV(η) =
n

∑
i=1

log{( f̂wdc,−γ(i)(·;ααα
′,H)∗ fUUU)(WWW i)}.

Observe that the length of ααα ′ is less than n so it is not the same as ααα in
Equation (7.10).

Unlike the classical deconvolution density estimator f̂dc (introduced in
Section 7.3.1), which has poor performance in the presence of the widespread
case of a normal measurement error density φΣΣΣUUU , for the weighted deconvo-
lution density estimator f̂wdc based on the normal kernel φ the assumption of
normal measurement error yields a simplification of the discrepancy, leading
to

Q(ααα) = n−2
n

∑
i, j=1

(αiα jφ2H+2ΣΣΣUUU −2αiφ2H+ΣΣΣUUU +φ2H)(WWW i−WWW j), (7.11)

which closely resembles the squared bias component of the smoothed cross
validation for selecting H for f̂ in Equation (3.18); and the coefficients in
the quadratic program are composed of [Q]i, j = n−2φ2H+2ΣΣΣUUU (WWW i−WWW j) and
bi = n−2

∑
n
j=1 φ2H+ΣΣΣUUU (WWW i−WWW j). Similarly the q-fold cross validation for the

regularisation parameter simplifies to

CV(η) =
n

∑
i=1

log

{
∑

γ( j)6=γ(i)
α
′
jφH+ΣΣΣUUU (WWW i−WWW j)

}
.

To compute these components Q,bbb, η̂ of the quadratic program in Equa-
tion (7.10) to obtain α̂αα , we require an estimator the error variance ΣΣΣUUU . Sup-
pose that for each observed, contaminated data point WWW i, we have the paired
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replicates WWW ′i,WWW
′′
i , i = 1, . . . ,n. According to Carroll et al. (2006), an estima-

tor of ΣΣΣUUU is SUUU = diag(S2
U,1, . . . ,S

2
U,d) where S2

U, j is the j-th marginal sample
variance of the paired differences W ′1, j−W ′′1, j, . . . ,W

′
n, j−W ′′n, j, j = 1, . . . ,d.

The weighted deconvolution density estimate in Figure 7.4(c) is detailed
in Algorithm 15. The inputs are the contaminated data {WWW 1, . . . ,WWW n} and the
paired contaminated data {WWW ′1, . . . ,WWW ′n},{WWW ′′1, . . . ,WWW ′′n}. The tuning parame-
ters are the bandwidth matrix H and the q for q-fold CV. In Line 1, the sample
error variance is computed from the paired contaminated data. In Line 2, the
regularisation parameter is the solution of the q-fold CV. In Line 3, the sample
error variance and regularisation parameter are substituted into the quadratic
program, resulting in the optimal weights. In Line 4, these weights are utilised
in the computation of the weighted deconvolution density estimator.

Algorithm 15 Weighted deconvolution density estimator
Input: {WWW 1, . . . ,WWW n},{WWW ′1, . . . ,WWW ′n},{WWW ′′1, . . . ,WWW ′′n},H,q
Output: f̂wdc(xxx; α̂αα,H)

1: Compute sample error variance SUUU from the paired differences WWW ′i−WWW ′′i
2: Find regularisation parameter η̂ as the solution of the q-fold CV
3: Find weights α̂αα as the solution to quadratic program with SUUU and η̂

4: Compute weighted deconvolution density estimator f̂wdc(xxx; α̂αα,H)

For the tuning parameters, Hazelton & Turlach (2009) recommended set-
ting q = 5 based on their empirical evidence. What remains is the selection
of the bandwidth. Whilst it is possible to develop weighted versions of the
plug-in and cross validation criteria in Chapters 2–3, we follow the advice of
Hazelton & Turlach (2009) that these unweighted selectors also perform well
for weighted deconvolution density estimators.

Following Algorithm 15, we obtain the error sample variance SU =
diag(6705.8,957.7) in utilising the air quality values at 7 p.m. and 9 p.m.
as replicated measurements, and the regularisation parameter η̂ = 0.00021.
Both density estimates are computed with the plug-in bandwidth ĤPI =
[440.0,79.2;79.2,66.9], so the observed differences in Figure 7.4(b)–(c), e.g.,
unimodal versus bimodal density estimates, are induced by the non-uniform
weights.

7.3.3 Manifold estimation

Manifold estimation is, at the time of writing, an active area of research in the
machine learning community, which is closely connected to various different
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subjects previously exposed here, such as support estimation (Section 6.1.2),
ridge estimation (Section 6.3) and deconvolution problems.

The observed sample WWW 1, . . . ,WWW n is D-dimensional, but it is supposed
to approximately lie on a d-dimensional manifold M with d smaller (some-
times, much smaller) than D. In the additive noise model it is assumed that
WWW i = XXX i +UUU i, where the distribution P of XXX1, . . . ,XXXn is supported on M and
the distribution of the noise variables UUU1, . . . ,UUUn is considered to be fully
known. Then, the goal is to estimate the manifold M, which is immediately
recognized as a support estimation problem under measurement error.

For the case where the distribution P is absolutely continuous with respect
to the D-dimensional Lebesgue measure (so that d =D), the first procedure to
estimate M consistently was proposed by Meister (2006). However, as noted
above, in many circumstances the main focus is on the case d � D, which
means that P is a singular distribution, since it is supported on a manifold
whose dimension is smaller than that of the embedding space. This problem
is studied in detail in Genovese et al. (2012), where further references and a
literature review are also provided.

Genovese et al. (2012) also showed that the best possible convergence rate
to estimate M, in terms of the Hausdorff distance, when the error distribution
is D-variate normal, is of order (logn)−1. This very slow rate is the same as
that of density deconvolution with normal measurement errors. A possible
way to overcome this problem is suggested by the same authors in Genovese
et al. (2014): instead of estimating M, change the goal to estimating the ridge
P of the distribution of WWW 1, . . . ,WWW n. Genovese et al. (2014) showed that if the
noise level is not too high, then P is reasonably close to and retains all of the
topological properties of M, i.e., P is nearly homotopic to M. Thus, P may
be considered as a surrogate for M even though it is a biased approximation;
recall from Section 6.3 that it can be estimated more accurately than M.

7.4 Nearest neighbour estimation as variable kernel estimation

Kernel estimators with a fixed, global bandwidth can be considered as the
most fundamental case for data smoothing. They are important in their own
right, though their importance extends beyond their direct application to data
analysis as the knowledge gained from them can be readily extended to other
non-parametric data smoothers. To illustrate this, we investigate the intimate
relationship between kernel and nearest neighbour estimators. The former are
most useful for low dimensional analysis whereas the sparse nature of the
latter ensure that they are highly useful for high dimensional analyses, so
these two classes of estimators are complementary to each other.
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The nearest neighbour estimator of a density function, as introduced by
Loftsgaarden & Quesenberry (1965) and elaborated by Mack & Rosenblatt
(1979), is

f̂NN(xxx;k) = n−1
δ(k)(xxx)

−d
n

∑
i=1

K((xxx−XXX i)/δ(k)(xxx)) (7.12)

where δ(k)(xxx) as the k-th nearest neighbour distance to xxx, i.e., δ(k)(xxx) is the
k-th order statistic of the (Euclidean) distances ‖xxx−XXX1‖, . . . ,‖xxx−XXXn‖. Equa-
tion (7.12) is the most general form of a nearest neighbour density estimator.

The mathematical analysis of f̂NN is simplified if we recast it as a variable
balloon kernel estimator. Generalising the balloon variable kernel estimator
f̂ball from Section 4.1, to the density derivative case yields D⊗r f̂ball(xxx;H(xxx))=
n−1|H(xxx)|−1/2(H(xxx)−1/2)⊗r

∑
n
i=1D

⊗rK(H(xxx)−1/2(xxx− XXX i)). The connection
between the nearest neighbour D⊗r f̂NN and the variable balloon kernel
D⊗r f̂ball estimators appears when H(xxx) = δ(k)(xxx)2Id is substituted into the
latter. This implies that the nearest neighbour estimator of the r-th derivative
of f follows as

D⊗r f̂NN(xxx;k) = n−1
δ(k)(xxx)

−d−r
n

∑
i=1

D⊗rK(δ(k)(xxx)
−1(xxx−XXX i)). (7.13)

It was established in Loftsgaarden & Quesenberry (1965) that the beta
family kernels are computationally efficient for estimating f and D f . To see
this, note that the nearest neighbour density estimator becomes

f̂NN(xxx;k) = n−1
n

∑
i=1

111{XXX i ∈ Bd(xxx,δ(k)(xxx))}= k/[v0nδ(k)(xxx)
d ] (7.14)

when using the zeroth beta kernel K(xxx;0) = v−1
0 111{xxx ∈ Bd(000,1)}, which is the

uniform kernel on the unit d-ball Bd(000,1). The summation counts the number
of data points which fall inside the ball Bd(xxx,δ(k)(xxx)), which is equal to k
from the definition of δ(k)(xxx) as the k-th nearest neighbour distance to xxx. In
Equation (7.14), the nearest neighbour density estimator at a point xxx reduces
essentially to computing δ(k)(xxx), and no explicit kernel function evaluations
are required.

The nearest neighbour estimator for the density gradient is

D f̂NN(xxx;k) = f̂NN(xxx;k)
d +2

δ(k)(xxx)2

[
k−1

n

∑
i=1

XXX i111{XXX i ∈ Bd(xxx,δ(k)(xxx))}− xxx
]

= f̂NN(xxx;k)
d +2

δ(k)(xxx)2

[
k−1

∑
XXX i∈NNk(xxx)

XXX i− xxx
]

(7.15)
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where NNk(xxx) = {XXX i : XXX i ∈ Bd(xxx,δ(k)(xxx))} is the set of the k nearest
neighbours to xxx. This density gradient estimator uses the first beta kernel
K(xxx;1) = [(d + 2)/(2v0)](1− xxxT xxx)111{xxx ∈ Bd(000,1)}, i.e., the Epanechnikov
kernel, which has derivative DK(xxx;1) = −[(d + 2)/v0]xxx111{xxx ∈ Bd(000,1)}.
Equation (7.15) is more complicated than Equation (7.14) as the former re-
quires the specification of the set of nearest neighbours rather than only the
nearest neighbour distance, though evaluating the kernel function at all esti-
mation points xxx is still not required.

Since the nearest neighbour density estimator contains jump discontinu-
ities due to the discreteness of the nearest neighbour distance δ(k), it does
not admit the pleasing smooth visualisations of the kernel counterparts. So
we do not focus on nearest neighbour estimators for direct data density vi-
sualisations. Instead we focus on their suitability for clustering for higher di-
mensional data due to their sparse nature and reduced computational load.
Recall that the target mean shift recurrence relation in Equation (6.3) is
xxx j+1 = xxx j +AD f (xxx j)/ f (xxx j). Replacing D f (xxx)/ f (xxx) by its nearest neighbour
estimator D f̂ (xxx;k)/ f̂ (xxx;k), and setting A = (d+2)−1δ(k)(xxx)2Id , we have that
nearest neighbour mean shift recurrence is

xxx j+1 = xxx j +ηηηNN(xxx j;k) = k−1
∑

XXX i∈NNk(xxx j)

XXX i (7.16)

where ηηηNN(xxx;k) = k−1
∑XXX i∈NNk(xxx j) XXX i−xxx is the nearest neighbour mean shift.

In comparison to the kernel mean shift in Equation (6.3), we only have to con-
sider sample means of the nearest neighbours of the current iterate xxx j rather
than the computationally intensive evaluations of the kernel function centred
at xxx j. The recurrence relation in Equation (7.16) was introduced by Fukunaga
& Hostetler (1975), beginning from a different starting point. Furthermore,
the convergence of the sequence {xxx0,xxx1, . . .} to a local mode has been as-
serted for the kernel version of Equation (7.16) was established by Comani-
ciu & Meer (2002, Theorem 1) for a fixed bandwidth H. Their proofs remain
valid when H is replaced with the nearest neighbour distance δ(k), which de-
creases as the iteration number increases.

Image segmentation is a procedure of assigning a label to each pixel in an
image so that similar pixels are grouped together. Within each group/segment,
all pixels are assigned the same colour so this reduces the complexity of the
colour information stored in the image. Comaniciu & Meer (2002) recognised
its mathematical equivalence to statistical clustering, and they popularised
mean shift clustering for image segmentation.

The colour information in an 8-bit RGB digital colour image is commonly
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represented as a triplet of red, green and blue colour levels (R,G,B) of inte-
gral values in the interval [0,255]. Since an image is a 2-dimensional array
of pixels, let (x,y) be the row and column index of a pixel. The spatial and
colour information of a pixel can thus be represented as a 5-dimensional vec-
tor (x,y,R,G,B). As the proximity of values in the RGB colour space do not
correspond well to human perceptions of colour closeness, a common choice
to replace the RGB colours is the L∗u∗v∗ colour space (Pratt, 2001, Equa-
tions 3.5-1a, 3.5-8a–f) for these image segmentation tasks. We omit these
equations as they are difficult to express concisely due to the many but slightly
different colour space parametrisations: in any case, it is recommended to em-
ploy implementations provided by expert colour analysts.

Example 7.5 In Figure 7.5(a) is a 481× 321 RGB image of two elephants
in a field: it is Test Image #296059 from the Berkeley Segmentation Dataset
(Martin et al., 2001). In addition to providing freely available images for im-
age analysis, the Berkeley Segmentation Dataset also supplies manual image
segmentations against which the computational algorithms can be compared.
The manually segmented image by User #1130 of the elephants is shown in
Figure 7.5(b) which distinguishes the sky, the vegetation and the elephants:
for the elephants, this user has further segmented the two different animals as
well their eyes and tusks. For an automatic segmentation, mutually separat-
ing the sky, the vegetation and the elephants is fairly straightforward as they
are widely differing colours. What is more difficult is to segment (a) the two
elephants from each other as they form adjacent regions with subtly different
colours and their (b) eyes and tusks from the skin as they are smaller regions.
The nearest neighbour mean shift segmentation with k = 780 nearest neigh-
bours is displayed in Figure 7.5(c). Whilst there are 28491 unique colours
in the original image, the mean shift segmented image consists of only 109
colours, indicating an important reduction in the image complexity. From this
segmented image, the edges of the segmented regions can be found. These
agree mostly with the manual edges in the separation of the sky, vegetation
and elephants, even though the former are not as smooth or as connected as
the latter. The manual segmentation more cleanly separates the elephant eyes
and tusks, as well as the two different animals. We do not claim that this is an
optimal edge detection for the segmented image: we merely wish to illustrate
the potential gains offered by nearest neighbour mean shift clustering even
with our sub-optimal, ad hoc edge detection. �

Comaniciu & Meer (2002) initially used the kernel mean shift for image
segmentation. More recently Duong et al. (2016) adapted this to the nearest
neighbour mean shift as it is suitable for clustering higher dimensional data.
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(a) (b)

(c) (d)

Figure 7.5 Segmentations of the elephants image. 1108 (a) Image is 481×321 pixels
with 8-bit RGB colours. (b) Manual segmentation with edge detection by User #1130.
(c) Nearest neighbour mean shift segmentation with k = 780 nearest neighbours. (d)
Nearest neighbour mean shift edge detection.

This is detailed in Algorithm 16. The inputs are an RGB image and the tuning
parameters for the nearest neighbour mean shift: the number of nearest neigh-
bours k, the tolerance ε1 under which subsequent iterations in the mean shift
update are considered convergent, the maximum number of iterations jmax,
and the tolerance ε2 under which two cluster centres are considered to form a
single cluster.

Lines 1-2 convert the RGB colours in the n×m RGB image to the L∗u∗v∗

colour space and, with the spatial indices (x,y), initialise the concatenated
(x,y,L∗,u∗,v∗) data matrix of dimensions nm× 5. The nearest neighbour
mean shift clustering itself is carried out in Line 3. This is carried out by
suitably modifying the kernel mean shift clustering in Algorithm 10 by re-
placing the kernel mean shift ηηη with its nearest neighbour counterpart ηηηNN,
and the bandwidth with the number of nearest neighbours k. The other tuning
parameters play the same role. The outputs are clusters with cluster labels. In
Line 4, the L∗u∗v∗ colours of the cluster modes are converted to RGB colours.
In Lines 5-6, the L∗u∗v∗ colour for each pixel is replaced by the RGB colours
of its cluster mode and then converted to an n×m RGB segmented image.
Line 7 is an optional step of edge detection in the segmented image.
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Algorithm 16 Nearest neighbour mean shift clustering for image segmenta-
tion

Input: RGB image, k,ε1,ε2, jmax
Output: Segmented RGB image

1: Convert (R,G,B) to (L∗,u∗,v∗) colours
2: Initialise (x,y,L∗,u∗,v∗) data matrix
3: Carry out nearest neighbour mean shift with k,ε1,ε2, jmax

with modified Algorithm 10 (kernel mean shift clustering)
4: Convert (L∗,u∗,v∗) colours of cluster modes to (R,G,B)
5: Replace (L∗,u∗,v∗) colours of pixels by (R,G,B) cluster mode
6: Convert (x,y,R,G,B) data matrix to RGB segmented image
7: (Optional) Carry out edge detection of RGB segmented image

For the selection of the number of nearest neighbours, most authors have
focused on cross validation approaches (Li, 1984; Biau et al., 2011; Kung
et al., 2012) in the direct form where each of the n leave-one-out estimators
is explicitly calculated for each k taken from a set of candidate values, and
then the optimal k is taken to be the value that yields the minimal cross val-
idation error. A procedure which avoids this explicit enumeration, like for
the cross validation selectors for kernel estimation, remains unknown. One of
the main reasons for this is the lack of an explicit closed form expression of
the AMISE of D⊗r f̂NN or D⊗r f̂ball since the latter are not guaranteed to be
(square) integrable.

An alternative error measure is to start with the AMISE of the fixed band-
width kernel estimator D⊗r f̂ (·;H) from Equation (5.16) and to replace H with
H(xxx) = δ(k)(xxx)2Id , see Duong et al. (2016). This results in a random quantity,
so we compute its expectation to give an AMISE-like quantity for the nearest
neighbour estimator

A{D⊗r f̂NN(xxx;k)}= E{AMISE{D⊗r f̂ (·;δ(k)(xxx)
2Id)}}.

For this expectation to be convergent, suppose that (B1)–(B2) in Conditions B
hold, and further suppose
(B3’) k = kn is a sequence of the number of nearest neighbours such that

k→ ∞, k/n→ const as n→ ∞.
Thus we have

A{D⊗r f̂NN(xxx;k)}
= tr(R(D⊗rK))[v0 f (xxx)](d+2r)/dn2r/dk−(d+2r)/d

+(−1)r 1
4 m2(K)2

ψψψ
>
2r+4(vecId)

⊗(r+2)[v0 f (xxx)]−4/dn−4/dk4/d (7.17)
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where v0 = πd/2Γ((d+2)/d) is the hyper-volume of the unit d-ball. The first
term is the integrated variance and the second term is the integrated squared
bias of D⊗r f̂NN; the role of k in a bias-variance trade-off is established in
Equation (7.17), analogous to that for kernel estimators in Equation (5.16).

The error measure A{D⊗r f̂NN(xxx;k)} still depends on xxx so it remains
a local measure. However its integral is not necessarily finite and so di-
rect integration does not lead to a global measure. On the other hand,
integrating after optimising does lead to a feasible selector, i.e., kA,r =∫
Rd{argmink>0 A{D⊗r f̂ (xxx;k)}}dxxx is finite. Moreover, its explicit formula is

kA,r = v0

[
(d +2r) tr(R(D⊗rK))

(−1)rm2(K)2ψψψ>2r+4(vecId)⊗(r+2)

]d/(d+2r+4)

n(2r+4)/(d+2r+4)

which serves as an optimal number of nearest neighbours.
For data-based selection of kA,r, the estimation of ψψψ2r+4 and higher or-

der functionals is required. As these nearest neighbours estimators are as yet
unknown, we employ instead the normal scale estimator ψ̂ψψNS,2r+4 to give a
normal scale selector for kA,r as

k̂NS,r = v0

[
4|S|1/2

∏
r
j=1(d +2 j)

νr+2(S−1)

]d/(d+2r+4)

n(2r+4)/(d+2r+4). (7.18)

When S = Id this reduces to v0[4/(d + 2r + 2)]d/(d+2r+4)n(2r+4)/(d+2r+4) as
νr+2(Id) = ∏

r+1
j=1(d + 2 j), which closely resembles the normal scale band-

width selector ĤNS,r = [4/(d + 2r+ 2)]2/(d+2r+4)n−2/(d+2r+4)Id for the ker-
nel estimator D⊗r f̂ in Section 5.6. The number of nearest neighbours grows
at rate n(2r+4)/(d+2r+4) as n→ ∞, in comparison to the bandwidth which de-
creases to 0 at rate n−2/(d+2r+4).

In terms of optimal selection of the number of nearest neighbours, we are
at an embryonic stage since we have only exhibited a normal scale selector.
For more sophisticated data-based selectors of kA,r, the required estimators of
ψψψ2r+4 and higher order functionals by nearest neighbour methods remain an
open problem.

So we are restricted to selecting the number of nearest neighbours for
the mean shift as k̂NS,1 = v0

[
4|S|1/2d(d+2)/ν3(S−1)

]d/(d+6)n6/(d+6). Recall
that bandwidth selection based on the density gradient was demonstrated to
be more suitable than that based on the density itself for kernel mean shift
clustering in Section 6.2. For the elephants image in Figure 7.5, this normal
scale selector is k̂NS,1 = 780 (for a pre-scaled (x,y,L∗,u∗,v∗) matrix) for the
image segmentation.
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To conclude, for a standard normal density, the AMISE{ f̂NN(·;k)} is con-
vergent and was computed by Terrell & Scott (1992). These authors also
computed the efficiency of a fixed bandwidth density estimator and the near-
est neighbour density estimator, as a function of the data dimension d, to
be Eff( f̂ , f̂NN) = minh>0 AMISE{ f̂ (·;h2Id)}/mink>0 AMISE{ f̂NN(·;k)} =
22d/(d+4)[(d − 2)/d]d(d+2)/(2d+8)[(d2 − 4)/(d2 − 6d + 16)]d/(d+4)111{d > 2}.
To achieve the same AMISE of the kernel estimator f̂ with a sample size n,
the nearest neighbour estimator f̂NN requires a sample size of n/Eff( f̂ , f̂NN).
The efficiency curve monotonically increases from d = 2 to the maximum
Eff( f̂ , f̂NN) at d = 15.27, and afterwards decreases monotonically to its
asymptote value of 1.47 as d→ ∞. An augmented version of Terrell & Scott
(1992, Table 3) is reproduced in Table 7.2. This provides some mathematical
justification for the heuristic observation that nearest neighbour estimators are
more efficient than kernel density estimators for moderate to high dimensions
(d > 4).

d 1 2 3 4 5 6 10 15 20 100
Eff( f̂ , f̂NN) 0 0 0.48 0.87 1.15 1.32 1.52 1.54 1.54 1.49

Table 7.2 Efficiency of a nearest neighbour ( f̂NN) and a kernel density ( f̂ ) estimator
as a function of dimension d.

7.5 Further mathematical analysis

7.5.1 Squared error analysis for deconvolution kernel density estimators

We begin by showing that the expected value of the deconvolution kernel
density estimator based on the contaminated data WWW 1, . . . ,WWW n is the same as
for the usual kernel density estimator based on the unobservable, error-free
data XXX1, . . . ,XXXn:

E{ f̂dc(xxx;H)}= E{KUUU
H (xxx−WWW ;H)}= E{KH(xxx−XXX)}= KH ∗ fXXX(xxx).

First, taking into account that ϕKH∗ fXXX (ttt) = ϕK(H1/2ttt)ϕXXX(ttt), it follows by the
inversion formula that

KH ∗ fXXX(xxx) = (2π)−d
∫
Rd

e−ittt>xxx
ϕK(H1/2ttt)ϕXXX(ttt)dttt. (7.19)

Analogously, note that E{KUUU
H (xxx−WWW ;H)}= {KUUU

H (·;H)∗ fWWW}(xxx) and that, by
definition, ϕKUUU (·;H)(ttt) = ϕK(ttt)/ϕUUU(H−1/2ttt), so that

ϕ{KUUU
H (·;H)∗ fWWW }(ttt) = ϕKUUU (·;H)(H

1/2ttt)ϕWWW (ttt) = ϕK(H1/2ttt)ϕWWW (ttt)/ϕUUU(ttt).
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Recalling that ϕWWW = ϕXXX ϕUUU , then in conjunction with Equation (7.19), the
result follows immediately.

The integrated variance of f̂XXX(XXX ;H) is n−1 ∫
Rd E{KUUU

H (xxx−WWW ;H)2}dxxx−
n−1
{∫

Rd E{KUUU
H (xxx−WWW ;H)}dxxx

}2. From the calculations in the previous para-
graph and the bias expansions in the error-free case, we can establish that
the first term, provided that

∫
Rd KUUU(zzz;H)2dzzz is finite, is dominant over the

second term which is of order n−1. Also, the usual change of variables
zzz = H−1/2(xxx−www) allows us to express the first term as

n−1
∫
Rd

E{KUUU
H (xxx−WWW ;H)2}dxxx = n−1|H|−1/2

∫
Rd

KUUU(zzz;H)2 dzzz

thus completing the proof of the asymptotic expansion of the MISE of
f̂dc(xxx;H).

7.5.2 Optimal selection of the number of nearest neighbours

The properties of the k-th nearest neighbour distance δ(k)(xxx),k = 1, . . . ,n as
the k-th order statistic are difficult to establish explicitly. The usual approach
is to analyse the order statistic U(k) for the simpler case where U1, . . . ,Un is
a random sample drawn from a common standard univariate uniform distri-
bution Unif[0,1]. The connection to the general k-th order distance statistic
δ(k)(xxx) is provided by the random variable R ≡ R(xxx) = 111{XXX ∈ ∂Bd(xxx,r)}
where XXX ∼ f and Bd(xxx,r)= {yyy : ‖xxx−yyy‖< r} is the d-dimensional ball centred
at xxx with radius r≥ 0. Since the distribution of R is FR(r;xxx) = P(XXX ∈ Bd(xxx,r))
is a well-defined distribution function, following Mack & Rosenblatt (1979);
Hall (1983), we have δ(k)(xxx) = F−1

R (U(k);xxx). This equation allows us to derive
immediately the relationship between the distributions of δ (k)(xxx) and U(k),

Fδ (k)(r;xxx) = P(F−1
R (U(k);xxx)≤ r) = P(U(k) ≤ FR(r;xxx)) = FU(k)(FR(r;xxx)).

From standard results, e.g., Johnson et al. (1994, p. 280), the k-th order uni-
form statistic U(k) is approximately Beta(k,n−k+1) distributed. The density
of δ(k) is thus a suitably transformed Beta density

fδ (k)(r;xxx) =
n!

( j−1)!(n− j)!
FR(r;xxx)k−1{1−FR(r;xxx)}n−k fR(r;xxx){1+o(1)}

where fR = F ′R is the derivative of FR. Whilst this closed form for fδ (k)
is aesthetically pleasing, its main role in selecting k is via the asymp-
totic approximations of the moments of δ(k)(xxx)α , that is, E{δ(k)(xxx)α} =
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[k/(nv0 f (xxx))]α/d{1+ o(1)} for any α and f (xxx) > 0, as established by Hall
(1983, Equation (2.2))

Substituting H(xxx) = δ(k)(xxx)2Id for H in AMISE{D⊗r f̂ (·;H)}, we obtain

AMISE{D⊗r f̂NN(xxx;k)}= n−1 tr(R(D⊗rK))δ(k)(xxx)
−d−2r

+ 1
4(−1)rm2(K)2

δ(k)(xxx)
4
ψψψ
>
2r+4(vecId)

⊗(r+2)

following similar reasoning to Chacón et al. (2011, Lemma 3(ii)) and Schott
(2003, Theorem 1(iv)). Taking its expected value yields our proposed opti-
mality criterion

A{D⊗r f̂NN(xxx;k)}= tr(R(D⊗rK))[v0 f (xxx)](d+2r)/dn2r/dk−(d+2r)/d

+(−1)r 1
4 m2(K)2

ψψψ
>
2r+4(vecI⊗(r+2)

d )[v0 f (xxx)]−4/dn−4/dk4/d .

Solving the differential equation (∂/∂k)A{D⊗r f̂ball(xxx;k)} = 0, and noting
that the resulting exponent of v0 f (xxx) is (d + 2r)/d + 4/d = 1 + (2r +
4)/d which is exactly the same as that of k, the solution is k∗A,r(xxx) =

Crv0 f (xxx)n(2r+4)/(d+2r+4) where

Cr =

[
(d +2r) tr(R(D⊗rK))

(−1)rm2(K)2ψψψT
2r+4(vecId)⊗(r+2)

]d/(d+2r+4)

and thus kA,r =
∫
Rd k∗A,r(xxx)dxxx follows immediately.

For the normal scale selector, let f = φΣΣΣ(·−µµµ) and K = φ , then m2(φ)= 1
and tr(R(D⊗rφ)) = 2−d−rπ−/d2νr(Id) = 2−r(4π)−d/2

∏
r−1
j=0(d + 2 j) using

Chacón et al. (2011, Lemma 3, Corollary 7), and ψψψ>NS,2r+4(vecId)
⊗(r+2) =

(−1)r+22−r−2(4π)−d/2|ΣΣΣ|−1/2νr+2(ΣΣΣ
−1) in conjunction with Chacón &

Duong (2010, Equation (7)). See also the calculations in Section 5.9.



Chapter 8

Computational algorithms

The data analysis procedures in the preceding chapters have been presented as
concise mathematical equations or pseudo-code algorithms, which facilitate
the comprehension of the underlying statistical reasoning. A direct translation
of these equations or pseudo-codes into a computer programming language
normally yields efficient software, but this is not always the case. In this chap-
ter, we detail the computational algorithms which are markedly different and
less statistically intuitive than their concise descriptions, but which lead to
important gains in computational efficiency, in terms of execution time and
memory management.

Section 8.1 outlines the R package and associated R scripts which im-
plement the algorithms and generate the figures presented in this monograph.
Section 8.2 elaborates binned estimation as a method of computing kernel es-
timators based on Fast Fourier Transform methods. Sections 8.3–8.4 explore
recursive algorithms for the exact computation of the derivatives and func-
tionals of the multivariate normal density. Section 8.5 considers numerical
optimisation for matrix-valued inputs.

8.1 R implementation

All the data analysis for the experimental and simulated data in this mono-
graph has been carried out in the R statistical programming environment (R
Core Team, 2017), and in particular with the ks package (Duong, 2007). R
has established itself as one of the leading platforms for data analysis due
to the breadth and depth of its coverage of the statistical algorithms from
its decentralised open source community of contributors. It is not our in-
tent here to provide the complete R script that was utilised to create the
figures in order that the reader can reproduce them. For this, see the web
page http://mvstat.net/mvksa. Rather, we present some of the high level
commands (from ks version ≥ 1.11.0) to indicate a typical user interface.
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For kernel density estimation, kde computes f̂ in Equation (2.2). The
command
> fhat.tempb <- kde(tempb)

computes a density estimate with a default plug-in bandwidth ĤPI, for tempb
the daily temperature data (21908× 2 matrix). Since tempb is a large data
set, binned approximations from Section 8.2 are invoked in the density esti-
mate kde and the bandwidth Hpi. The contour plot in Figure 2.4(a) and the
perspective plot in (b) are produced by
> plot(fhat.tempb, display="filled.contour")

> plot(fhat.tempb, display="persp")

All the plotting functions in the ks package are overloaded by the same func-
tion name plot, but since R is an object-oriented programming language, the
same plot command automatically calls the appropriate plotting method.

In comparison to tempb, the grevillea data set is a smaller 222× 2
matrix so the exact calculations can be used for the density estimation and
bandwidth selection. To use a bandwidth other than the default Hpi in kde,
it needs to be called explicitly, e.g., for the SCV bandwidth
> fhat.scv <- kde(x=grevillea, H=Hscv(grevillea))

Figure 2.11(a) is created using Hns, (b) Hnm, (c) Hucv, (d) Hbcv, (e) Hpi, (f)
Hscv, as listed in Table 8.1.

Method Notation ks function Text reference
Normal scale ĤNS Hns Equation (3.2)
Normal mixture ĤNM Hnm Algorithm 1
Unbiased cross validation ĤUCV Hucv Algorithm 2
Biased cross validation ĤBCV Hbcv Algorithm 3
Plug-in ĤPI Hpi Algorithm 4
Smoothed cross validation ĤSCV Hscv Algorithm 5

Table 8.1 R functions for bandwidth selection for density estimation in ks package,
along with their references in this text.

The selectors employed in Figures 2.11(a)–(f) are class F unconstrained
matrices. They are also available as class D diagonal matrices, as denoted
by the .diag suffix, e.g., Hpi.diag. Figure 2.8(b) shows Hpi and (c) shows
Hpi.diag.

For variable density estimation in Section 4.1, the balloon estimator
f̂ball is kde.balloon and the sample point one f̂SP is kde.SP. The log-
arithm transformation density estimator f̂trans in Equation (4.3) is imple-
mented as an extra parameter in kde, namely, kde(,positive=TRUE).
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For the boundary kernel estimators in Section 4.3, the basic command
is kde.boundary, and the beta boundary estimator f̂beta is invoked by
setting boundary.kernel="beta" and the linear boundary one f̂LB by
boundary.kernel="linear".

The full worldbank data is a 218× 7 matrix, with wbi being 218× 2
matrices comprising the appropriate columns from worldbank. The balloon
and sample point variable density estimators in Figures 4.1(d) and (f) are
called by

> fhat.wb1.ball <- kde.balloon(x=wb1)

> fhat.wb1.sp <- kde.sp(x=wb1)

and the transformation density estimator in Figures 4.2(b) and (c) by

> fhat.wb2.trans <- kde(x=wb2, adj.positive=c(0,0),

+ positive=TRUE)

and the beta and linear boundary density estimators in Figures 4.3(d) and (f)
by

> xmin <- c(0,0); xmax <- c(100,100)

> fhat.wb3.beta <- kde.boundary(x=wb3, xmin=xmin,

+ xmax=xmax, boundary.kernel="beta")

> fhat.wb3.LB <- kde.boundary(x=wb3, xmin=xmin, xmax=xmax,

+ boundary.kernel="linear")

For kernel density derivative estimation, kdde computes D⊗r f̂ in Equa-
tion (5.1). The command

> fhat1.tempb <- kdde(tempb, deriv.order=1)

computes a density gradient estimate D f̂ with a plug-in bandwidth ĤPI,1. Fig-
ures 5.1(a)–(b) are the contour plots for each partial derivative. The quiver
plot in (c) is produced by

> plot(fhat1.tempb, display="quiver")

The commands

> fhat2.tempb <- kdde(tempb, deriv.order=2)

> fhat2.tempb.curv <- kcurv(fhat2.tempb)

compute a density second derivative estimate D⊗2 f̂ with a plug-in bandwidth
ĤPI,2 and its summary curvature ŝ. Figures 5.2(a)–(d) show the contour plots
for each partial derivative and the summary curvature.

The available bandwidth selectors for density derivative estimation are:
normal scale ĤNS,r (Equation (5.18)), unbiased cross validation ĤUCV,r (Al-
gorithm 7), plug-in ĤPI,r (Algorithm 8), and smoothed cross validation ĤSCV,r

(Algorithm 9), and the functions to compute them have the same name,
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with a deriv.order option to set the derivative order r, e.g., ĤPI,1 is
Hpi(,deriv.order=1). For the Grevillea data, Figure 5.3(a) is generated
by Hns, (b) by Hucv, (c) by Hpi, (d) by Hscv for the gradient, and similarly
for Figures 5.6(a)–(d) for the curvature. To use a bandwidth other than Hpi in
kdde, it should be called explicitly,

> H <- Hscv(grevillea, deriv.order=1)

> fhat1.tempb.scv <- kdde(x=grevillea, deriv.order=1, H=H)

For level set estimation, the plot method displays them from a density
estimate. The modal region L̂( f̂0.5) of the daily temperature data in Fig-
ure 6.1(a) is

> plot(fhat.tempb, cont=50)

The density support estimate L̂( f̂0.0005) is

> plot(fhat.tempb, cont=99.95)

and its convex hull can be obtained by applying the native R command chull.
For mean shift clustering, kms computes the estimated cluster labels

γ̂ in Algorithm 10, where the default tuning parameter values are as de-
scribed in Section 6.2.2 and the default plug-in bandwidth ĤPI,1 as given
by Hpi(,deriv.order=1). The scatter plot with the cluster labels for the
hematopoietic stem cell data hsct6 (the data matrix for the mouse sub-
ject #12 of size 6236×3) in Figure 6.8 is produced from

> ms.hsct <- kms(hsct12)

For density ridge estimation, kdr computes P̂ in Algorithm 11, with the
default values of the tuning parameters, and plug-in bandwidth ĤPI,2 obtained
through Hpi(,deriv.order=2). The 1-dimensional density ridge estimate
for the quake data (2646×2 matrix) in Figure 6.10 is computed by

> dr.quake <- kdr(quake)

For feature significance, kfs computes the significant modal regions
M̂ in Algorithm 12, where the default tuning parameter values are as de-
scribed in Section 6.3 and the default plug-in bandwidth ĤPI,2 is computed
with Hpi(,deriv.order=2). The significant modal region estimates for the
hsct12 data in Figure 6.12 are produced from

> fs.hsct <- kfs(hsct12)

For significant density difference region estimation, kde.loc.test com-
putes Û+, Û− in Algorithm 13, with default plug-in bandwidths Ĥ1,PI,Ĥ2,PI
as computed by Hpi. The significant density difference regions between the
control subject #6 (hsct6) and treatment subject #12 (hsct12) from the stem
cell data in Figure 7.1 is calculated by the command
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> loc.test.hsct <- kde.local.test(x1=hsct6, x2=hsct12)

For kernel classification, kda computes the estimated group labels γ̂ in
Algorithm 14, with plug-in bandwidths Hpi for each group. The classifier for
the training foetal cardiotocographic data (cardio.train, 532× 2 matrix)
with labels (cardio.train.lab, vector of length 532) in Figure 7.3(a) is

> kda.cardio <- kda(x=cardio.train, x.gr=cardio.train.lab)

and the scatter plot in Figure 7.3(b) of the estimated group labels for the test
cardiotocographic data (cardio.test, 1594×2 matrix) is based on

> cardio.test.lab.est <- predict(kda.cardio, x=cardio.test)

For weighted density estimation, kde allows for non-uniform weights w
via kde(,w) to compute f̂wt. For weighted deconvolution density estimation,
dckde computes f̂wdc in Algorithm 15. Once the air quality data is suitably
reshaped into a 1300×2 matrix air, Figure 7.4(c) is produced by

> fhat.air.dec <- dckde(x=air,Sigma=Sigma.air,reg=0.00021)

where the values of the sample error variance SUUU (Sigma.air) and the regu-
larisation parameter η̂ (reg) are computed according to Section 7.3.

For nearest neighbour mean shift clustering, nnms computes the estimated
group labels γ̂ in Algorithm 16. For image segmentation image.nnms further
converts these group labels for each pixel to a colour segmented image. From
the original 481× 321 JPEG image elephant, then elephant.luv is the
154401× 5 matrix in the transformed (x,y,L∗,u∗,v∗) coordinates. The seg-
mented image in Figure 7.5(c) is generated by

> nnms.elephant <- image.nnms(x=elephant.luv,

+ x.orig=elephant, min.clust.size=16*24)

These nearest neighbour commands are not included in the ks package.

8.2 Approximate binned estimation

8.2.1 Approximate density estimation

From Equation (2.2), a kernel density estimator at an single estimation point xxx
is f̂ (xxx;H) = n−1

∑
n
i=1 KH(xxx−XXX i). For visualisation purposes, we are required

to evaluate f̂ over a grid of estimation points xxx1, . . . ,xxxM. For a given grid, a di-
rect implementation of this, by explicitly looping over the grid points and data
points leads to computationally intensive calculations for large n and/or M. A
common approach to reduce this computational burden for large n is to seek
an approximate estimator. One of the most effective approximations is known
as the binned kernel density estimator (Silverman, 1986, Chapter 3.5), as it
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is computed directly on a hyper-rectangular grid, where each of the hyper-
rectangles are known as bins. Whilst they share the hyper-rectangular grid
structure of histograms, unlike the latter, the binwidths do not play a role
in data smoothing, but only in controlling the approximation error (Hall &
Wand, 1996).

There are three main steps in constructing a binned estimator. First, given
a grid of size M, the data sample XXX1, . . . ,XXXn are converted from n points to
the M counts at each of the grid points. These counts are then embedded
in a larger matrix C. Second, the kernel function is evaluated at the same
grid points and also embedded into a larger matrix K which has the same
dimensions as C. Third, the binned density estimator f̃ is obtained from a
sequence of discrete convolutions of C and K. The key steps thus concern
how (a) to embed the binning counts and kernel function evaluations to obtain
C and K and (b) to extract the elements from the convolution of C and K.

The first step is to convert the data points into counts on the binning grid.
The procedure for simple binning assigns a weight of 1 to the nearest grid
point to the data point XXX i, though this loses too much information in the dis-
cretisation. More accurate is the linear binning which assigns the weights pro-
portional to the subtended hyper-rectangles to the 2d nearest grid points (Hall
& Wand, 1996). To illustrate this in more detail, we focus on the bivariate
case.

Write xxx j1, j2 as an abbreviation of (x j1 ,x j2) and suppose that the i-th
data point XXX i falls in the bin whose vertices are xxx j1, j2 ,xxx j1+1, j2 ,xxx j1, j2+1 and
xxx j1+1, j2+1. Further suppose that the area of the bin is A and the areas of
the rectangles subtended from XXX i are A1,A2,A3,A4. The count assigned to
each vertex grid point is then equal to the area of the diagonally opposite
rectangle divided by the total area of the bin, i.e., c j1, j2 = A4/A,c j1+1, j2 =
A3/A,c j1, j2+1 = A2/A,c j1+1, j2+1 = A1/A, and A = A1 +A2 +A3 +A4, as il-
lustrated in Figure 8.1. This is repeated for all data points and the individual
counts at the grid points are thus accumulated.

Suppose that the binning grid size is M = M1M2. Let the binning counts
be c`1,`2 for `1 = 1, . . . ,M1, `2 = 1, . . . ,M2. The binned density estimator at
a grid point xxx j1, j2 is the discrete convolution of the binning counts and the
kernel evaluations, as introduced by Wand (1994):

f̂bin(xxx j1, j2) = n−1
M1

∑
`1=1

M2

∑
`2=1

c`1,`2KH(xxx j1, j2− xxx`1,`2). (8.1)

The second step for the evaluation of the kernel function at the same bin-
ning grid is characterised in the following manner. Let the binning grid be
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XXX i

xxx j1, j2 xxx j1+1, j2

xxx j1+1, j2+1xxx j1, j2+1

c j1, j2 = A4/A c j1+1, j2 = A3/A

c j1+1, j2+1 = A1/Ac j1, j2+1 = A2/A

A1 A2

A3 A4

Figure 8.1 Linear binning counts. A bivariate point XXX i is converted to the counts as-
signed to its 4 nearest grid points xxx j1, j2 ,xxx j1, j2+1,xxx j1+1, j2 ,xxx j1+1, j2+1. Their respective
counts are equal to the area of the diagonally opposite rectangle divided by the total
area of bin A.

covered exactly by [a1,b1]× [a2,b2], where a1,a2 are less than the marginal
sample minima, and b1,b2 are greater than the marginal sample maxima.
Hence, xxx j1, j2 = (a1 + j1δ1,a2 + j2δ2), where the binwidths are δ1 = (b1−
a1)/(M1 − 1),δ2 = (b2 − a2)/(M2 − 1). Then the required kernel function
evaluations are k`1,`2 = n−1KH(δ1`1,δ2`2). This notation allows us to re-write
Equation (8.1) as a bidimensional discrete convolution

f̂bin(xxx j1, j2) =
M1−1

∑
`1=−(M1−1)

M2−1

∑
`2=−(M2−1)

c j1−`1, j2−`2k`1,`2 (8.2)

where we understand that c`1,`2 = 0 for (`1, `2) 6∈ {1, . . . ,M1}×{1, . . . ,M2}.
The third step is more complicated as it is computationally intensive to

compute the double sum in Equation (8.2) as a double loop, so the usual
approach is to embed the M1M2 binning counts c`1,`2 and the kernel function
evaluations k`1,`2 into larger matrices and to take advantage of faster matrix-
based calculations. The embeddings posited by Wand (1994) were suitable
only for the constrained classes of scalar matrices A and diagonal matrices
D, and were extended to the unconstrained class F by Gramacki & Gramacki
(2017a,b).

Since discrete convolutions are most effective when operating on matrices
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whose dimensions are highly composite numbers, we set P1,P2 to be a power
of 2 greater than the grid sizes M1,M2. Writing 0m,n for the (m× n) zero
matrix, the zero-padded version of the binning counts is

C =


0M1−1,M2−1 0M1,M2−1 0P1−2M1+1,M2−1

c1,1 . . . c1,M2

0M1−1,M2

...
... 0M1P1−2M1+1,M2

cM1,1 . . . cM1,M2

0M1−1,P2−2M2+1 0M1,P2−2M2+1 0P1−2M1+1,P2−2M2+1


and of the kernel evaluations is

K =



k−M1,−M2 . . . k−M1,0 . . . k−M1,M2
...

...
...

k0,−M2 . . . k0,0 . . . k0,M2 02M1+1,P2−2M2−1
...

...
...

kM1,−M2 . . . kM1,0 . . . kM1,M2

0P1−2M1−1,2M2+1 0P1−2M1−1,P2−2M2−1


where C,K ∈MP1×P2 . We then compute F = ϕ−1(ϕ(C)ϕ(K)) where ϕ is
a discrete Fourier transform and ϕ−1 is its inverse transform. These are ef-
ficiently computed using FFT (Fast Fourier Transform) methods. As F is a
P1×P2 matrix, the appropriate normalised submatrix of F which gives the
approximate density estimator evaluated on the M1×M2 binning grid is

f̂bin(·;H) = (P1P2)
−1F[(2M1−1) : (3M1−2),(2M2−1) : (3M2−2)]

where F[r1 : r2,c1 : c2] denotes the submatrix of F formed by selecting the
elements in rows r1 to r2 and columns c1 to c2.

The implementation steps for this binned density estimator f̂bin are pre-
sented in Algorithm 17. The inputs are the data XXX1, . . . ,XXXn, and the tuning
parameters are the bandwidth matrix H, the minima aaa, the maxima bbb and the
vector M of coordinate sizes of the binning grid. The output is the binned den-
sity estimator f̂bin evaluated on the grid. Lines 1–2 initialise the binning grid
and matrix sizes. Lines 3–5 perform the binning counts, and Lines 6–9, the
kernel function evaluations. Lines 9–10 carry out the zero-padding and FFT
operations to create F. Line 11 normalises and takes the appropriate subset of
F to be the binned density estimator.

The algorithm described above can be further expedited if we realise that
it is not required to evaluate the binning counts and kernel functions at all
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Algorithm 17 Binned density estimator
Input: {XXX1, . . . ,XXXn},H,aaa,bbb,M
Output: f̂bin(·;H)

1: Initialise M1×·· ·×Md binning grid on [a1,b1]×·· ·× [ad ,bd ]
2: Initialise P1, . . . ,Pd := 2dlog2(2M1)e, . . . ,2dlog2(2Md)e

3: for `1, . . . , `d := 1 to M1, . . .Md do
4: Compute binning counts c`1,...,`d

5: end for
6: for `1, . . . , `d :=−M1, . . . ,−Md to M1, . . .Md do
7: Evaluate kernel functions k`1,...,`d

8: end for
9: Create zero-padded counts and kernel matrices C,K

10: Perform FFT operations F := ϕ−1(ϕ(C)ϕ(K))
11: f̂bin(·;H) := normalised subset of F

the grid points, due to the finite effective support of the kernel. Gramacki &
Gramacki (2017a) suggest that M j in the loops in Lines 3–8 of Algorithm 17
can be replaced by, e.g., L j = min(M j−1,dτ λ

1/2
1 /δ je) for j = 1, . . . ,d. Here,

τ = 3.7 is a commonly used value, and λ1 is the largest eigenvalue of H.
These adjustments usually lead to secondary gains in efficiency compared to
primary gains due to the FFT operations in Line 10.

Here it is convenient to note that, from experimental evidence, for d = 1,
a grid size M = 401 is sufficiently dense to ensure an approximation that is
visually indistinguishable from the exact estimator f̂ for the vast majority of
cases. Likewise, for d = 2, the value M = 1512 is widely used. For d = 3,
there is less consensus for a generally suitable grid size but M = 513 gives a
reasonably close approximation in a reasonable time frame. This is illustrated
empirically for the temperature data in Figure 8.2. In (a), the dotted black
lines are the density estimate with an 11×11 grid, which is overlaid with the
density estimate in the solid purple lines with a 151× 151 grid. The former
grid is too sparse and leads to insufficiently smooth contours. In (b), the dotted
black lines are the density estimate with a 301× 301 grid, which is visually
indistinguishable from the default density estimate in the dotted purple lines,
despite that the higher resolution grid contains 3012 = 90601 points which is
a 4-fold increase on the 1512 = 22801 points.

The squared error analysis of f̂bin was comprehensively studied by Hall &
Wand (1996) and Holmström (2000). Theorem 2.5 in Holmström (2000) as-
serted that MISE{ f̂bin(·;H)} converges at the rate n−1|H|−1/2+‖vecH‖2+δ 4

as n→ ∞, where δ = max(δ1, . . . ,δd). The third term accounts for the bin-



190 COMPUTATIONAL ALGORITHMS

(a) (b)

Figure 8.2 Different grid sizes for the kernel density estimates of the temperature
data. The density estimate on the default 151× 151 grid is in solid purple. (a) The
density estimate on an 11×11 grid is in dotted black. (b) The density estimate on a
301×301 grid is in dotted black.

ning grid binwidths in comparison to the exact density estimator which
has MISE{ f̂ (·;H)} = O(n−1|H|−1/2 + ‖vecH‖2). For the usual case where
H = O(n−2/(d+4)), if the maximum binwidth δ is of order n−1/(d+4), then
MISE{ f̂bin(·;H)} converges to 0 at the same rate as MISE{ f̂ (·;H)}.

8.2.2 Approximate density derivative and functional estimation

For each r-th order partial derivative of the density f (rrr) indexed by rrr =
(r1, . . . ,rd), the binned estimator is analogously defined as

f̂ (rrr)bin (xxx j1,..., jd ;H) = n−1
P1

∑
`1=1

. . .
Pd

∑
`d=1

c`1,...,`d K(rrr)
H (xxx j1,..., jd − xxx`1,...,`d ). (8.3)

The binning counts previously computed for the density estimator can be
re-utilised without modification, so this discretisation needs only to be per-
formed once per data set. Moreover, the FFT operations remain the same,
and so the only difference arises from the kernel function evaluations. We
compute the partial derivative k(rrr)`1,...,`d

= n−1K(rrr)
H (δ1`1, . . . ,δd`d) for binwidths

δ j = (b j− a j)/(M j− 1), j = 1, . . . ,d. Zero-padding the binning counts and
the kernel derivatives to produce C,K, the binned estimator is the normalised
submatrix of F = ϕ−1(ϕ(C)ϕ(K))

f̂ (rrr)bin (·;H) = (P1 · · ·Pd)
−1F[(2M1−1) : (3M1−2), . . . ,(2Md−1) : (3Md−2)].
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If A is a P1× ·· · ×Pd array, then the (`1, . . . , `d)-th element of its discrete
Fourier transform A′ = ϕ(A) is

a′`1,...,`d
=

P1

∑
j1=0
· · ·

Pd

∑
jd=0

a`1,...,`d exp[2πi(`1 j1/P1 + · · ·+ `d jd/Pd)]

where a`1,...,`d is the corresponding element of A and i is the pure imagi-
nary number. The inverse transform ϕ−1(A′) which recovers the original el-
ements from A is a`1,...,`d = ∑

P1
j1=0 · · ·∑

Pd
jd=0 a′`1,...,`d

exp[−2πi(`1 j1/P1 + · · ·+
`d jd/Pd)].

For the individual density derivative functionals ψrrr =
∫
Rd f (rrr)(xxx) f (xxx)dxxx,

the binned estimator is

ψ̂bin,rrr(G) = n−1
P1

∑
j1=1

. . .
Pd

∑
jd=1

c j1,..., jd f̂ (rrr)bin (xxx j1,..., jd ;H) (8.4)

where we re-utilise the partial density derivatives estimators above.
The goal is to produce estimators of the vectorised derivative forms D⊗r f

and ψψψr, whilst the binned estimators only act on individual partial derivatives.
It is computationally efficient to calculate the entire normal density derivative
D⊗rφΣΣΣ(xxx) initially, enumerate over the individual partial derivatives to com-
pute all the required f̂ (rrr)bin (·;H), and then collate them into D⊗r f̂bin(·;H) or
ψ̂ψψbin,r(G).

8.3 Recursive computation of the normal density derivatives

Binned estimators can vastly improve the computational efficiency of kernel
estimators for large sample sizes via FFT operations. To maintain this com-
putational gain, we require an efficient method for computing higher order
derivatives of the normal density as they are one of the inputs for the FFTs.

For the normal density φΣΣΣ(xxx) = (2π)−d/2|Σ|−1/2 exp(−1
2 xxx>ΣΣΣ

−1xxx) we
have D⊗rφΣΣΣ(xxx) = (−1)r(ΣΣΣ−1)⊗rHHHr(xxx;ΣΣΣ)φΣΣΣ(xxx), where we recall from Equa-
tion (5.5) that HHHr is the r-th order Hermite polynomial in xxx, given by

HHHr(xxx;ΣΣΣ) = r!SSSd,r

dr/2e

∑
j=0

(−1) j

j!(r−2 j)!2 j

{
xxx⊗(r−2 j)⊗ (vecΣΣΣ)⊗ j},

with SSSd,r standing for the symmetriser matrix. An important special case is
xxx = 0, since the normal scale functionals which are the starting point for the
plug-in and smoothed cross validation bandwidth selectors can be expressed
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as ψψψNS,r = D⊗rφ2ΣΣΣ(0). The general case is required for the other stages in
these bandwidth selection algorithms.

Whilst the previous explicit formula for the r-th order Hermite polyno-
mial allows for the study of the theoretical properties for arbitrary dimension
d and derivative order r, some authors have noticed the difficulties that the
computation of the symmetriser matrix SSSd,r entails (Triantafyllopoulos, 2003;
Kan, 2008). Here we present an alternative recursive formula that avoids the
explicit computation of the symmetriser matrix SSSd,r, and also re-utilises the
results from lower order polynomials.

This recursion is outlined in Algorithm 18, adapted from Chacón &
Duong (2015). It is based on the vector HHHr(xxx;ΣΣΣ) containing the unique el-
ements of (ΣΣΣ−1)⊗rHHHr(xxx;ΣΣΣ) in a coherent order that facilitates recursive com-
putation. This vector HHHr can be shown to have length Nd,r =

(r+d−1
r

)
, which

for most values of d and r is much smaller than dr, which is the length of HHHr.
For a multi-index mmm = (m1, . . . ,md) with |mmm| = m1 + · · ·+md = r we intro-
duce the scalar Hermite polynomial H(mmm)(xxx;ΣΣΣ) such that the partial derivative
of φΣΣΣ(xxx) indexed by mmm is φ

(mmm)
ΣΣΣ

(xxx) = (−1)rφΣΣΣ(xxx)H(mmm)(xxx;ΣΣΣ). The inputs of Al-
gorithm 18 are the evaluation point xxx, the variance matrix ΣΣΣ and the order r
of the derivative. The output is the full derivative D⊗rφΣΣΣ(xxx). Line 1 initialises
the recursion with HHH0(xxx;ΣΣΣ),HHH1(xxx;ΣΣΣ). In Lines 2–6, the recursive sub-routine
in Algorithm 19 is employed to compute HHH`(xxx;ΣΣΣ), for `= 2, . . . ,r. Lines 7–8
rearrange the elements of HHHr(xxx;ΣΣΣ) to form the required D⊗rφΣΣΣ(xxx).

Algorithm 18 Recursive computation of the normal density derivative
Input: xxx,ΣΣΣ,r
Output: D⊗rφΣΣΣ(xxx)

1: Initialise HHH0(xxx;ΣΣΣ) := 1; HHH1(xxx;ΣΣΣ) := ΣΣΣ
−1xxx

2: if r ≥ 2 then
3: for ` := 2 to r do /* Algorithm 19 */
4: Obtain HHH`(xxx;ΣΣΣ) from HHH`−1(xxx;ΣΣΣ) and HHH`−2(xxx;ΣΣΣ)
5: end for
6: end if
7: Distribute elements of HHHr(xxx;ΣΣΣ) to form (ΣΣΣ−1)⊗rHHHr(xxx;ΣΣΣ)
8: D⊗rφΣΣΣ(xxx) := (−1)r(ΣΣΣ−1)⊗rHHHr(xxx;ΣΣΣ)φΣΣΣ(xxx)

To describe the mathematical justifications for Algorithms 18–19, we re-
quire some notation that characterises precisely the systematic computation
of D⊗rφΣΣΣ(xxx). Let PRd,r = {1, . . . ,d}r be the set of all r-length multi-indices
of {1, . . . ,d}. Each element of D⊗r can be written as D(iii) = ∂ r/(∂xi1 · · ·∂xir)
for some iii = (i1, . . . , ir) ∈ PRd,r, so that for each j ∈ {1, . . . ,r} the in-
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Algorithm 19 Recursive computation of the minimal Hermite polynomial
Input: HHHr(xxx;ΣΣΣ),HHHr−1(xxx;ΣΣΣ)
Output: HHHr+1(xxx;ΣΣΣ)

1: j := 1;` := 1
2: for mmm ∈ Id,r do
3: HHHr+1(xxx;ΣΣΣ)[`] :=H(mmm+eee1)(xxx;ΣΣΣ); ` := `+1
4: end for
5: for j := 2 to d−1 do
6: for mmm ∈ last Nd− j+1,r elements of HHHr(xxx;ΣΣΣ) do
7: HHHr+1(xxx;ΣΣΣ)[`] :=H(mmm+eee`)(xxx;ΣΣΣ); ` := `+1
8: end for
9: end for

10: j := d; HHHr+1(xxx;ΣΣΣ)[`] :=H(0,...,0,r+1)(xxx;ΣΣΣ)

dex coordinate i j refers to the coordinate of xxx with respect to which the
j-th partial derivative is performed. Noting that the cardinality of PRd,r
is dr, Chacón & Duong (2015, Appendix 2) constructed a bijective map
p : PRd,r → {1,2, . . . ,dr} that allows us to order all the elements of PRd,r
as iii1 = p−1(1), . . . , iiidr = p−1(dr) in a way such that the k-th element of
D⊗r ∈ Rdr

is precisely Diiik ; that is, D⊗r = (D(iii1), . . . ,D(iiidr )). This provides
a well-organised procedure to compute all the partial derivatives to form D⊗r.
Nevertheless, the fact that the cardinality dr rapidly increases with d and (es-
pecially) r implies that computational bottlenecks are reached if the brute
enumeration of all of its elements is carried out.

Since φ is infinitely differentiable, most of the entries of D⊗rφΣΣΣ(xxx) are du-
plicated at different positions, due to Schwarz’s theorem for the interchange-
ability of the partial derivative order, and in this sense the number of unique
elements of D⊗rφΣΣΣ(xxx) is lower than its length dr. To take advantage of this
fact, let Id,r = {(m1, . . . ,md) ∈ {0,1, . . . ,r}d : |mmm| = r} be the set of all non-
negative integer d-vectors whose sum is r. Then, any coordinate of D⊗r can
be written as D(mmm) for some mmm ∈ Id,r, where D(mmm) = ∂ |mmm|/(∂xm1

1 · · ·∂xmd
d ).

Here, for each ` ∈ {1, . . . ,d}, the index m` refers to the number of times
that the operator partially differentiates with respect to x`. This implies that
{D(mmm) : mmm ∈ Id,r} contains the unique elements of D⊗r. An efficient way to
obtain D⊗r is to compute {D(mmm) : mmm ∈ Id,r} and then rearrange them to form
D⊗r. Thus we require D(r), an ordering of {D(mmm) : mmm ∈ Id,r}, which facilitates
this rearrangement.

For a given mmm ∈ Id,r, there are possibly many iii ∈ PRd,r such that D(mmm) =
D(iii), so it suffices to have m` = ∑

r
j=1 111{i j = `}, for ` = 1, . . . ,d. Since the
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elements in PRd,r have been given a natural order via the map p−1, we as-
sociate each mmm ∈ Id,r with the first iii ∈ PRd,r for which D(mmm) = D(iii) holds,
i.e., min{k : D(mmm) = D(iiik),k ∈ {1, . . . ,d

r}}. By doing this for all the elements
mmm ∈ Id,r we obtain an unambiguous ordering of the unique elements of D⊗r,
which are thus collected in a vector D(r) of length |Id,r| = Nd,r. This corre-
spondence between D(r) and D⊗r facilitates the rearrangement of the former
to the latter in Line 7 of Algorithm 18.

We follow the ordering of D(r) to construct the minimal Hermite poly-
nomial HHHr(xxx;ΣΣΣ) such that D(r)φΣΣΣ(xxx) = (−1)rφΣΣΣ(xxx)HHHr(xxx;ΣΣΣ). The definition
of HHHr(xxx;ΣΣΣ) is not suitable for computation, so it would be desirable to have
a more convenient, recursive form. Given the Nd,r−1-vector HHHr−1(xxx;ΣΣΣ) and
the Nd,r-vector HHHr(xxx;ΣΣΣ), the goal is to compute the Nd,r+1-vector HHHr+1(xxx;ΣΣΣ),
with the first two recursion evaluationsHHH0(xxx;ΣΣΣ) = 1 and H1(xxx;ΣΣΣ) = ΣΣΣ

−1xxx. To
proceed, we draw on the recursive form of the scalar-valued Hermite polyno-
mials (Savits, 2006, Theorem 4.1):

H(mmm+eee j)(xxx;ΣΣΣ) = z jH
(mmm)(xxx;ΣΣΣ)−

d

∑
`=1

v j`m`H
(mmm−eee`)(xxx;ΣΣΣ) (8.5)

where V = ΣΣΣ
−1 = [v j`]

d
j,`=1 and zzz = Vxxx = (z1, . . . ,zd), for j = 1, . . . ,d, and

we follow the convention that H(mmm−eee`)(xxx;ΣΣΣ) = 1 if m` = 0.
For j = 1, with Equation (8.5), we obtain all Nd,r scalar-valued Her-

mite polynomials corresponding to the derivative indices {mmm + eee1 : mmm ∈
Id,r} = {mmm ∈ Id,r+1 : m1 ≥ 1}. These are placed in the first Nd,r positions
of HHHr+1(xxx;ΣΣΣ). This is carried out in Lines 1–4 in Algorithm 19. The re-
maining Nd−1,r+1 positions will be occupied by polynomials of the form
{mmm ∈ Id,r+1 : m1 = 0}= {(0,m2, . . . ,md) : m2 + · · ·+md = r+1}.

For j = 2, with Equation (8.5), we obtain all Nd−1,r scalar-valued Her-
mite polynomials of the form {(0,m2, . . . ,md) : m2 + · · ·+md = r+ 1,m2 ≥
1}= {mmm+eee2 : mmm = (0,m2, . . . ,md),mmm∈ Id,r}. As m1 = 0, then Equation (8.5)
simplifies to H(mmm+eee2)(xxx;ΣΣΣ) = z2H

(mmm)(xxx;ΣΣΣ)−∑
d
`=2 v2`m`H

(mmm−eee`)(xxx;ΣΣΣ). Since
the first Nd,r−1 elements of the HHHr(xxx;ΣΣΣ) correspond to the multi-indices
mmm ∈ Id,r with m1 ≥ 1, then Equation (8.5) is applied to the last Nd−1,r el-
ements of HHHr(xxx;ΣΣΣ). The results are then placed in HHHr+1(xxx;ΣΣΣ) immediately
after those already in the first Nd,r positions from j = 1, which maintains
a coherent ordering of the elements of HHHr+1(xxx;ΣΣΣ). At this stage, we have
placed Nd,r + Nd−1,r elements of HHHr+1(xxx;ΣΣΣ). The remaining Nd−2,r+1 ele-
ments will be occupied by polynomials of the form {mmm ∈ Id,r+1 : m1 = m2 =
0}= {(0,0,m3, . . . ,md) : m3 + · · ·+md = r+1}.

For j = 3, . . . ,d− 1, we repeat the analogous calculations which lead to
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the placement of Nd,r +Nd−1,r + · · ·+N1,r elements of HHHr+1(xxx;ΣΣΣ). Lines 5–9
in Algorithm 19 cover the cases j = 2, . . . ,d−1.

For j = d, as Nd,r+1 = Nd,r +Nd−1,r + · · ·+N1,r +1 from Pascal’s rule for
binomial coefficients, there remains one element to compute. Equation (8.5)
simplifies to H(0,...,0,r+1)(xxx;ΣΣΣ) = zdH

(0,...,0,r)(xxx;ΣΣΣ)− vddrH(0,...,0,r−1)(xxx;ΣΣΣ).
This is carried out in Line 10 in Algorithm 19.

These computations, developed in Chacón & Duong (2015), improve on
the algorithm provided by Savits (2006, Theorem 4.1) as the former maintains
a coherent ordering in HHH(r+1)(xxx;ΣΣΣ) which is straightforward to rearrange to
the complete derivative D⊗(r+1)φΣΣΣ(xxx).

8.4 Recursive computation of the normal functionals

For the bandwidth selection algorithms, the ν functionals from Section
5.1.3 are a crucial component of the normal scale, normal mixture, plug-
in and smoothed cross validation selectors. Whilst Holmquist (1996b, The-
orem 8) exhibited their concise expression as νr(A) = E{(YYY A>YYY )r} =
(2r)!(vec>A)⊗rSSSd,2r ∑

r
i=0[µµµ

⊗(2r−2i)⊗ (vecΣΣΣ)⊗i]/[i!(2r− 2i)!2i] where YYY ∼
N(µµµ,ΣΣΣ), this does not lend itself to efficient calculation. An alternative ap-
proach is based on the recursive relation between cumulants and lower order
ν functionals. For a real random variable Y , its cumulant generating function
is given by ψ(t) = logE{exp(tY )} and, if this function is r-times differen-
tiable, the r-th cumulant of Y is defined as ψ(r)(0) for r≥ 1. Mathai & Provost
(1992, Theorem 3.2b.2) asserted that, for r ≥ 1,

νr(A) =
r−1

∑
i=0

(
r−1

i

)
κr−i(A)νi(A),

with the recursion starting with ν0(A) = 1, where κr(A) is the r-th cumulant
of the random quadratic form YYY>AYYY , which is explicitly given by the formula

κr(A)≡ κr(A; µµµ,ΣΣΣ) = 2r−1(r−1)!{tr[(AΣΣΣ)r]+ rµµµ
>(AΣΣΣ)r−1Aµµµ}.

For the mixed moment νr,s(A,B), Smith (1995, Equation (10)) showed
that

νr,s(A,B) =
r

∑
i=0

s−1

∑
j=0

(
r
i

)(
s−1

j

)
κr−i,s− j(A,B)νi, j(A,B) (8.6)

where κr,s(A,B) is the joint (r,s)-th cumulant of YYY>AYYY and YYY>BYYY .
For r + s ≥ 1 this is defined as ∂ r+s/(∂ tr

1∂ ts
2)ψ(0,0), where ψ(t1, t2) =
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logE{exp(t1YYY>AYYY + t2YYY>BYYY )} is the joint cumulant generating function,
and is explicitly given by

κr,s(A,B) = 2r+s−1r!s! ∑
iii∈MPr,s

tr
{

Fi1 · · ·Fir+s [Id/(r+ s)+ΣΣΣ
−1

µµµµµµ
>]
}

(8.7)

where F1 =AΣΣΣ,F2 =BΣΣΣ, and MPr,s =
{

iii=(i1, . . . , ir+s)∈{1,2}r+s : n1(iii)=
r, n2(iii) = s

}
is the set of permutations of the multiset having r copies of 1

and s copies of 2. Here n`(iii) denotes the number of times that ` appears in iii,
for `= 1,2; i.e., n`(iii) = ∑

r+s
k=1 111{ik = `}. Chacón & Duong (2015, Theorem 3)

established Equation (8.7), which corrects some errors in the formula derived
from Mathai & Provost (1992, Theorem 3.3.4 and Corollary 3.3.1).

The other important class of functionals in the algorithms for the plug-
in, and unbiased and smoothed cross validation selectors are η2r(xxx;ΣΣΣ) =
(vec> Id)

⊗rD⊗2rφΣΣΣ(xxx). In the previous section, we developed recursive for-
mulas for D⊗2rφΣΣΣ(xxx) at a single point xxx, but here we require double sums of
the type Qr(ΣΣΣ) = n−2

∑
n
i, j η2r(XXX i−XXX j;ΣΣΣ). For large n, these can pose two

different, in some sense dual, problems. If we enumerate singly the data dif-
ference XXX i−XXX j, then this increases the computation time in n2. If we wish
to take advantage of vectorised computations offered in many software pack-
ages, then this requires storing an n2× d matrix in memory which is not al-
ways feasible. Thus we search for a suitable compromise between execution
speed and memory usage on commonly available desktop computers.

Chacón & Duong (2015, Theorem 4) asserted that Qr(ΣΣΣ)=∑
n
i, j=1 φΣΣΣ(XXX i−

XXX j)νr(Id ;ΣΣΣ
−1(XXX i−XXX j),−ΣΣΣ

−1), which requires the evaluations of the prod-
uct of a νr functional for a non-constant mean with the normal density
in a double sum. The presence of the νr functional allows for a recursive
computation. The corresponding cumulant is κr(Id ;ΣΣΣ

−1(XXX i−XXX j),−ΣΣΣ
−1) =

(−2)r−1(r − 1)!{− tr(ΣΣΣ−1) + r(XXX i − XXX j)
>ΣΣΣ
−r−1(XXX i − XXX j). This cumulant,

along with the normal density φΣΣΣ(XXX i−XXX j) = (2π)−d/2|ΣΣΣ|−1/2 exp{−1
2(XXX i−

XXX j)
>ΣΣΣ
−1(XXX i−XXX j)} are the two most computationally intensive operations in

Qr(ΣΣΣ), due to the calculation of the quadratic forms (XXX i−XXX j)
>ΣΣΣ
−`(XXX i−XXX j)

for 1 ≤ ` ≤ r + 1. If these are decomposed as (XXX i−XXX j)
>ΣΣΣ
−`(XXX i−XXX j) =

XXX>i ΣΣΣ
−`XXX i +XXX>j ΣΣΣ

−`XXX j−2XXX>i ΣΣΣ
−`XXX j, then each term is efficiently handled by

the vectorised computations in many software packages, in terms of execu-
tion speed but with memory requirements only slightly larger than storing the
original sample XXX1, . . . ,XXXn, since the differences XXX i−XXX j, j = 1, . . . ,n, are
kept in memory for each i singly rather than for all i as we loop over i.

This is outlined in Algorithm 20. Lines 1–5 perform this decomposition.
Line 6 computes the normal density φΣΣΣ from the decomposed quadratic from
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with ΣΣΣ
−1. Lines 7–9 recursively compute ν`(Id ;ΣΣΣ

−1(XXX i−XXX j),−ΣΣΣ
−1), ` =

0, . . . ,r, from the lower order functionals νk and cumulants κk, k = 0, . . . , `.
Line 10 forms Qr from the inner product of φΣΣΣ and νr.

Algorithm 20 Recursive computation of Qr

Input: {XXX , . . . ,XXXn},ΣΣΣ,r
Output: Qr(ΣΣΣ)

1: for ` := 1 to r+1 do
2: for i, j := 1 to n do
3: Decompose quadratic form (XXX i−XXX j)

>ΣΣΣ
−`(XXX i−XXX j)

4: end for
5: end for
6: Compute φΣΣΣ(XXX i−XXX j) from decomposed quadratic form
7: for ` := 1 to r do
8: Obtain ν` from ν0, . . . ,ν`−1 and κ0, . . . ,κ`−1 from decomposed

quadratic forms
9: end for

10: Qr(ΣΣΣ) := n−2
∑

n
i, j=1 φΣΣΣ(XXX i−XXX j)νr(Id ;ΣΣΣ

−1(XXX i−XXX j),−ΣΣΣ
−1)

Recall that from Equation (5.29) the SCV criterion for the r-th density
derivative is

SCVr(H) = 2−(d+r)
π
−d/2n−1|H|−1/2

νr(H−1)

+(−1)rn−2{Qr(2H+2G)−2Qr(H+2G)+Qr(2G)}.

The νr(H−1) is efficiently computed using Equations (8.6)–(8.7) since νr ≡
νr,0. Using the binned approximations ψ̂ψψbin,2r(ΣΣΣ) of ψ̂ψψ2r(ΣΣΣ) from Section 8.2
leads to Q̂bin,r(ΣΣΣ) = (vec> Id)

⊗rψ̂ψψ2r(ΣΣΣ). So the binned estimator of SCVr(H)
is SCVbin,r(H) = 2−(d+r)π−d/2n−1|H|−1/2νr(H−1)+ (−1)rn−2{Q̂bin,r(2H+
2G)− 2Q̂bin,r(H+ 2G)+ Q̂bin,r(2G)}. Otherwise the exact estimator can be
computed using the procedures described in this section.

8.5 Numerical optimisation over matrix spaces

To compute data-based bandwidth selectors, most methods require a numer-
ical optimisation of the appropriate objective function. As most numerical
optimisation algorithms focus on scalar or vector-valued inputs, computing
the constrained bandwidth selectors from the class A or D is straightforward.
However, we have focused on unconstrained bandwidths from class F, e.g.,
the plug-in bandwidth from Equation (5.24) is ĤPI,r = argminH∈F PIr(H;G).
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There are many fewer optimisation algorithms dedicated to matrix-valued in-
puts, especially for those with a special structure like those which comprise
the class F.

Fortunately we are not required to develop special matrix optimisation
algorithms for our purposes, as we can adapt the existing vector optimisation
ones. Since we require a symmetric, positive definite d×d bandwidth matrix,
we carry out the optimisation over a d∗-vector ηηη , to obtain

η̂ηη = argmin
ηηη∈Rd∗

PIr
(
(vech−1

ηηη)(vech−1
ηηη)>;G

)
where d∗ = d(d + 1)/2 and vech−1 is the inverse vector half operator, i.e.,
it forms a symmetric d × d matrix from a vector of length d∗, such that
vech−1(vechA) = A for any symmetric d× d matrix A. The resulting plug-
in bandwidth matrix ĤPI,r = η̂ηηη̂ηη

> is by construction symmetric and positive
definite. We can thus take advantage of the many, efficiently coded optimisa-
tion algorithms for vector inputs, e.g., a Newton-type algorithm in Schnabel
et al. (1985).

A convenient initial value ηηη0 for this optimisation is based on the normal
scale bandwidth, by setting ηηη0 = vech(Ĥ1/2

NS,r) for a matrix square root of the
normal scale selector ĤNS,r in Equation (5.18).



Appendix A

Notation

111d is the d-vector whose elements are all ones

Ab is the Abramson selector

[aaa]i is the i-th element of a vector aaa

111{A} is the indicator function for A
[A]i, j is the (i, j)-th element of a matrix A
A⊗r is the r-fold Kronecker product of a matrix A
A1/2 is the matrix square root of a matrix A
A> is the transpose of a matrix A
Ā is the closure of set A

A4B is the symmetric difference between two sets A and B

A= {h2Id : h > 0} is the class of scalar matrices

AMISE is the asymptotic mean integrated squared error

AMSE is the asymptotic mean squared error

ARE is the asymptotic relative efficiency

Bias is the bias

B(α1,α2) = Γ(α1)Γ(α2)/Γ(α1 +α2) is the complete beta function with pa-
rameters α1,α2

Bd(xxx,r) is the d-dimensional ball centred at xxx with radius r

b̂bb is a data-based binwidth

BCV is biased cross validation

C = {C1, . . . ,Cq} is a clustering partition with q classes

CV is cross validation

d is the data dimension

d is the differential operator
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D is the class of diagonal matrices

D is the vector differential operator

D⊗r is the r-th order differential operator

DH is the differential operator with respect to H
D⊗r f̂ is an r-th order kernel density derivative estimator

D⊗r f̂NN is an r-th order nearest neighbour density derivative estimator

∂/∂xi is the partial derivative operator with respect to the i-th coordinate

δ(k) is the k-th nearest neighbour distance

E is the expected value operator

f , fXXX is a probability density function, of the random variable XXX

f (rrr) is a single rrr-th order partial derivative of f

f (rrr)+ , f (rrr)− are the positive and negative parts of f (rrr)

fτ is the height of the 100τ% probability contour of a density f

f̂ , f̂ (·;H) is a kernel density estimator, with bandwidth matrix H
f̃ , f̃ (·;G) is a pilot kernel density estimator, with pilot bandwidth matrix G
f̂−i is a leave out i kernel density estimator

f̂ball is a balloon variable kernel density estimator

f̂beta is a beta boundary kernel density estimator

f̂dc is a deconvolution density estimator

f̂hist, f̂hist(·;bbb) is a histogram density estimator, with binwidth bbb

f̂LB is a linear boundary kernel density estimator

f̂NN, f̂NN(·;k) is a nearest neighbour density estimator, with k nearest neigh-
bours

f̂SP is a sample point variable kernel density estimator

f̂trans is a transformation kernel density estimator

f̂wdc is a weighted deconvolution density estimator

F, fXXX is a cumulative distribution function, of the random variable XXX

F(A) is the probability that XXX belongs to A for XXX ∼ F

F is the class of positive definite, symmetric matrices

g is a scalar pilot bandwidth

G is a pilot bandwidth matrix

γ is a cluster labelling function

γBayes is the cluster labelling function of the Bayes classifier
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h is a scalar bandwidth

ĥ is a data-based bandwidth selector

H is a bandwidth (or smoothing parameter) matrix

Ĥ is a data-based bandwidth matrix selector

H is the Hessian operator

HH is the Hessian operator with respect to H
HHHr is the r-th order multivariate Hermite polynomial

Id is the d×d identity matrix

ISB is the integrated squared bias

ISE is the integrated squared error

IV is the integrated variance

Jd is the d×d matrix of ones

K(1) is a univariate kernel function

Kbeta(1),K(1)(·;1) is the univariate beta kernel function

K is a multivariate kernel function

Kh(x) is a scaled univariate kernel function

KH(xxx) is a scaled multivariate kernel function

KLB is a linear boundary kernel function

KP is a multivariate product kernel

KS is a multivariate spherically symmetric kernel

KS(·;r) is the r-th beta family spherically symmetric kernel

KUUU is a deconvolution kernel

L(c),L( f ;c) is the level set of f at height c

L̂(c), L̂( f̂ ;c) is the level set of the kernel density estimator f̂ at height c

L∗ is a level set with strict inequality

ΛΛΛ is a diagonal matrix of eigenvalues

‖·‖ is the Euclidean norm

M,M( f ) is the modal region of the density function f

Mr×s is the class of r× s matrices

mr(K) is the r-th order moment of a kernel K

mmmr(K) is the r-th order vector moment of a kernel K

mmmr(A;K) is the r-th order vector moment of a kernel K, restricted to A
µµµr is the r-th vector moment of a standard normal distribution
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MISE is the mean integrated squared error

MR is the misclassification rate

MS is maximal smoothing

MSE is the mean squared error

N(µµµ,ΣΣΣ) is the normal distribution with mean µµµ and variance ΣΣΣ

NM is normal mixture

NS is normal scale

νr,νr,s are the r-th and (r,s)-th order functionals of quadratic forms of nor-
mal random variables

o,O are the small and big O orders

oP,OP are the small and big O orders in probability

Ω is a finite data support

⊗ is the Kronecker product operator between two matrices

OF is the odd factorial

φ is the standard d-variate normal density

φΣΣΣ(·−µµµ) is the d-variate normal density with mean µµµ and variance ΣΣΣ

P is the probability operator

P,P( f ) is the ridge of the density f

PI is plug-in

ϕa is the characteristic function of function a

ϕXXX is the characteristic function of density fXXX

ψψψr is the r-th order integrated density functional

ψ̂ψψr is the kernel integrated density functional estimator

r is the derivative order

R(a) =
∫
Rd a(xxx)2 dxxx

R(aaa) =
∫
Rd aaa(xxx)aaa(xxx)> dxxx

R(b,aaa) =
∫
Rd b∗aaa(xxx)aaa(xxx)> dxxx

Rd is the d-dimensional Euclidean space

s is the summary curvature function

S,S( f ) is the support of density function f

S is a sample variance matrix

SSSd,r is the dr×dr symmetriser matrix

SCV is smoothed cross validation
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trA is the trace of a square matrix A
4 is the Laplacian operator

U is a matrix of eigenvectors

U(p),U(p) are matrices of the p eigenvectors with the largest/smallest p
eigenvalues

U+,U− are significant positive/negative regions of a density difference

UCV is unbiased cross validation

Var is the variance

vec is the vector operator

vech is the vector half operator

W s
+,W

u
− are stable/unstable manifolds

ξξξ is a critical point of a function

xxx,yyy,zzz etc. are d-dimensional free variables

XXX ,YYY ,ZZZ etc. are d-dimensional random vectors

∼ is the operator which indicates asymptotic equivalence

∼ is the operator which indicates distribution

∗ is the convolution operator of two functions
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Appendix B

Matrix algebra

For completeness, this appendix collects some well-known matrix algebra
results that are used throughout the monograph. More details of them can be
found in Magnus & Neudecker (1999) and Schott (2005).

B.1 The Kronecker product

For any pair of matrices A = (ai j) ∈Mm×n and B ∈Mp×q, their Kronecker
product is defined as the matrix A⊗B∈M(mp)×(nq) formed by (m×n) blocks,
with the (i, j)th block given by ai jB ∈Mp×q; that is,

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
Similarly, the rth Kronecker power of a matrix A∈Mm×n is defined as A⊗r =⊗r

i=1 A = A⊗A⊗·· ·⊗A ∈Mmr×nr .
For conformable matrices A, B, C, D, some of the basic properties of the

Kronecker product are:

A⊗B 6= B⊗A
A⊗B⊗C = (A⊗B)⊗C = A⊗ (B⊗C)

(A+B)⊗C = A⊗C+B⊗C
(A⊗B)(C⊗D) = (AC)⊗ (BD)

(A⊗B)> = A>⊗B>

(A⊗B)−1 = A−1⊗B−1

tr(A⊗B) = (trA)(trB).

Also, α ⊗A = αA = Aα = A⊗α for α ∈ R, and |A⊗B| = |A|p|B|m for
A ∈Mm×m, B ∈Mp×p.
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The Kronecker product also makes sense for vectors, provided they are
understood as single-column matrices. Hence, for aaa = (a1, . . . ,ap) ∈ Rp and
bbb ∈ Rq we have aaa⊗ bbb = (a1bbb; . . . ;apbbb) ∈ Rpq and it is straightforward to
verify that aaa⊗bbb> = aaabbb> = bbb>⊗aaa ∈Mp×q.

B.2 The vec operator

If A = (ai j) ∈Mm×n then vecA ∈ Rmn is the vector constructed by stacking
the columns of A one underneath the other; that is,

vecA = (a11, . . . ,am1; . . . ;a1n, . . . ,amn).

For conformable matrices A, B, C and vectors aaa, bbb, some of the properties
of the vec operator which are extensively used in this monograph are:

vecaaa = vecaaa> = aaa

vec(ABC) = (C>⊗A)vecB

vec(aaabbb>) = vec(aaa⊗bbb>) = vec(bbb>⊗aaa) = bbb⊗aaa

tr(A>B) = (vecA)> vecB.

B.3 The commutation matrix

Let A ∈Mm×n and B ∈Mp×q. The commutation matrix Km,n ∈M(mn)×(mn)

is the only matrix that transforms vecA into vec(A>); that is, Km,n vecA =
vec(A>).

The basic properties of the commutation matrix that are used in this book
include:

K>m,n = K−1
m,n = Kn,m

Kp,m(A⊗B)Kn,q = B⊗A
vec(A⊗B) = (In⊗Kq,m⊗ Ip)(vecA⊗vecB).
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Pereira-Leite, L. (2000), ‘SisPorto 2.0: A program for automated anal-
ysis of cardiotocograms’, Journal of Maternal-Fetal Medicine 9, 311–
318.

Azzalini, A. & Torelli, N. (2007), ‘Clustering via nonparametric density
estimation’, Statistics and Computing 17, 71–80.

Baı́llo, A. (2003), ‘Total error in a plug-in estimator of level sets’, Statistics

207



208 BIBLIOGRAPHY

and Probability Letters 65, 411–417.

Baı́llo, A. & Chacón, J. E. (2018), ‘A survey and a new selection criterion
for statistical home range estimation’. Unpublished manuscript.

Baı́llo, A., Cuesta-Albertos, J. A. & Cuevas, A. (2001), ‘Convergence rates
in nonparametric estimation of level sets’, Statistics and Probability
Letters 53, 27–35.

Baı́llo, A., Cuevas, A. & Justel, A. (2000), ‘Set estimation and nonparamet-
ric detection’, Canadian Journal of Statistics 28, 765–782.

Bartlett, M. S. (1951), ‘An inverse matrix adjustment arising in discriminant
analysis’, Annals of Mathematical Statistics 22, 107–111.

Beirlant, J., Györfi, L. & Lugosi, G. (1994), ‘On the asymptotic normality
of the L1- and L2-errors in histogram density estimation’, Canadian
Journal of Statistics 22, 309–318.

Bellman, R. (1961), Adaptive Control Processes: A Guided Tour, Princeton
University Press, Princeton.

Berlinet, A. & Devroye, L. (1994), ‘A comparison of kernel density es-
timates’, Publications de l’Institute de Statistique de L’Université de
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