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ABSTRACT

The field of life imaging spans a large spectrum of scientific study from mathematics
and computer science to medical, passing by physics, biology, etc. The challenge of
IDV project is to enrich a multi-parametrized, quantitative, qualitative, integrative,
and correlative life imaging in health. It deals with linking the current research
developments and applications of life imaging in medicine and biology to develop
computational models and methods for imaging and quantitative image analysis
and validate the added diagnostic and therapeutic value of new imaging methods
and biomarkers.
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1. INTRODUCTION

The healthcare industry is a large generator of biomedical data. For instance, the
U.S. healthcare system expected to reach the zettabyte (10*') scale from electronic
health records, scientific instruments, clinical decision support systems, or even
research articles in medical journals (Raghupathi & Raghupathi, 2014).

In the last decade, we have witnessed the increasing resolution of imaging
technologies which are considered as one of the most promising medical and health
areas example and application of big data (e.g., NIH Braininitiative, n.d.) transforming
case-based studies to large-scale, data-driven research (Luo, Wu, Gopukumar, &
Zhao, 2016) and (Serrano, Blas, Carretero, & Desco,2017).

Interdisciplinary research in the field of imaging in the life sciences is essential.
It requires the implication of different clinical and preclinical imaging departments
yielding easy access to the state-of-the-art imaging equipment and patient data.
Cooperative projects, including physicians, mathematicians, computer scientists,
and physicists who are working closely together with bio scientists and clinicians
are then launched in order to (i) develop computational models and methods for
imaging and quantitative image analysis, and (ii) validate the added diagnostic and
therapeutic value of new imaging methods and biomarkers.

Imaging is characterized by a large diversity in the types of data. Indeed, the
data can originate from many different acquisition device, i.e., modalities, and the
data format convention are quite loose with an important diversity in file formats
and in completeness of annotation. The data themselves also strongly differ in their
dimensionality, scale, size, and finality.

In such context, the life imaging project “IDV” (for Imageries Du Vivant) funded
by University Sorbonne Paris Cité (USPC) launched the “Atlas IDV” initiative, which
is a typical use case for data volume, variety and veracity in big data. The Atlas
IDV initiative aims at (i) providing an integrated and agile environment supporting
cooperation between scientists, and (ii) enabling to augment the research perimeter
of imaging scientists and the extraction of new knowledge (data-driven research and
images analytics) from the big multi-modal and multi-scale clinical and preclinical
images available within the university.

Alotof studies in small animal imaging are hampered by small number of subjects,
to the detriment of statistical quality of the findings. The junction of imaging data
from a wide perimeter enables researchers to analyze a larger number of subjects, and
hence to improve the statistical quality of their reports. Two use cases can be cited:
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1. Many pathologies affect the normal physiology across many physical scales,
and a complete understanding of these phenomena can only be obtained when
examining images from a wide diversity of scales and contrasts. The “Atlas
IDV” initiative, by virtue of its multidisciplinarity, will enable to put together
datasets arising from a wide diversity of imaging techniques by the way of
intelligent retrieval of heterogeneously stored data. As such, it will be a unique
opportunity to make significant advances in the field of the life sciences.

2. The availability of such an infrastructure will also be helpful to facilitate
standardization of the imaging methods. Indeed, an essential part of the validation
process for imaging biomarkers is the possibility to share data obtained on
a standardized object “phantom” across different vendors. The “Atlas IDV”
initiative, by its distributed architecture, can allow to be carried out.

The “Atlas IDV” initiative brings together more than 200 scientists, affiliated
with more than 20 research groups on 10 sites (Sts Péres Biomedical Center, HEGP,
Necker Hosp., Bichat-Beaujon Hosp., Cochin Hosp., St Anne Hosp., Lariboisi¢re
Hosp., Cordeliers center, Chimie ParisTech, Villetaneuse Paris 13). The objective of
the chapter is to give a global vision and feedbacks on an ambitious big data project
for imaging research and what it brings to the IDV community.

Like organizations, one of the most important assets of any imaging research
team is its image sets. Hence, the image sets are kept in two forms: using a set
of dedicated cloud based operational systems of images records and processing
supplying the “Atlas IDV” system (a.k.a data lake). The authors will show how the
integrated imaging operational system promotes intra and inter-sites collaborative
research work, while respecting data quality and privacy.

The Atlas IDV is based on the CIRRUS infrastructure available at USPC, more
precisely the CUMULUS (n.d.) private cloud. Indeed, until recently USPC had
no funding policy for platform development and sustainability, which has led to
the need to disguise such development in call for proposals. With the CIRRUS
platform, USPC has now made significant progress and the CIRRUS platform is
used by projects in the ‘deployment’ phase. This implies requirements for stability
through a deep control of the technical management to upgrade and to maintain the
existing technology. In this chapter, a virtual datacenter inside CIRRUS is used to
make concrete our ideas.

The business process as a service, i.e., BPaaS, implemented handles the imaging
lifecycle of a variety of images’ types (i.e., around 20 modalities acquired using
heterogeneous imaging equipment’s), with a large volume estimated at over 1 terabyte
per day. For more information on BPaaS, see (Bentounsi, 2015).
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To improve the images sets quality and indexing, native metadata (i.e., inserted
by an imaging equipment) are enhanced using three main strategies:

1. Arobustannotation scheme, which is the only way to ensure the scientific validity
of the findings. Hence the availability of a web-based standardized annotation
tools to enable researchers to associate datasets with accurate experimental
information in a user-friendly manner, is of paramount importance (Kumar,
Dyer, Kim, Li, Leong, Fulham, & Feng, 2016).

2. An enrichment of images sets via the crowdsourcing allows to harvest new
annotations. Through an easy-to-use and intuitive interface, expert researchers
(physicians, doctors, etc) submit their annotation tasks to non-expert contributors
(students in medicine, biology, etc). Each task is a collection of one or more
images. The contributors, categorized based on their experience, indicate
their confidence for annotation. To collect high quality annotations, validation
algorithm is used. It filters out annotations with low confidence and selects
frequent and relevant annotations.

3. A semantic enrichment using linked open data and medical ontologies
(“Radiology Lexicon”, n.d.; “National Cancer Institute Thesaurus”, n.d.; “Cell
Ontology”, n.d.).

Data enrichment strategies are helpful in big imaging data. This will improve
images retrieval and analytics using innovative scalable algorithms based on
MapReduce paradigm.

Privacy-enhancing technologies are used to preserve patient privacy by
anonymizing images and metadata, and also by controlling the identification risk
for the entire lifecycle of the “Atlas IDV” (Bentounsi & Benbernou, 2016) and
(Bentounsi, Benbernou, & Atallah, 2016). In addition, a mechanism of images
usage control in the Atlas is used leading to more transparency (Cao Huu, 2017).

E-Science has a better recognition of skills in software development as well as
in large-scale infrastructure engineering in different disciplines. USPC should now
recognize an interdisciplinary and complementary research on large scale systems
and software in order to allow a sustainable development of the USPC platforms and
to study a set of best (common) practices. The “Atlas IDV” initiative is a precursor
project into that direction and their members are very excited by that idea.

The overall objective that we call for “interdisciplinary research” is preferably to
apply well established methods inherited from e-Sciences for the building of systems
for large scale computing and data management. The assumption is to check or to
identify first what is common, in terms of Systems, between the disciplines versus
the developments of new methods and technologies anchored in a unique discipline.
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Finally, with such a System, USPC researchers can collectively be proactive
in experimental science we obtain when using large scale platforms. We must not
confuse the ‘scientific problem’ term and the ‘System for scientific problem’ term
in order to serve the scientific community to solve scientific problems. We need
scientists who develop software to support all the sciences we conduct at USPC.
This cannot be the sole responsibility of computer scientists or engineers, but the
informatics should rather percolate inside the disciplines, as we have shown in this
chapter.

This Chapter is organized as follows. Section 2 introduces the Atlas IDV global
architecture. Section 3 presents the project’ private cloud and its architecture. Section
4 discusses how the crowdsourcing is used in the context of the project to annotate
medical images. Semantic enrichment and Linked Open Data are presented in
Section 5. Finally, Section 6 discusses images analytics in the context of the project
and Section 7 concludes the chapter.

2. ATLAS IDV ARCHITECTURE

Like datasets for organizations, one of the most important assets of any imaging
laboratory is its image sets, which represent the most visible part of a long (generally
several years) and costly research process. First of all, like most areas of research,
imaging researchers access to online research articles in medical journals and library
reference collections to examine the state-of-art in a particular area. Based on their
bibliographic studies, they develop research protocols specific to pathologies treated
and results desired. The search protocol involves three key steps:

1. Develop new contrast agents or biomarkers.

2. Perform preclinical tests on cells and small animals to validate the efficiency
and the non-harmfulness of the agents and/or biomarkers on living organisms.

3. If the first two steps have been conclusively established, clinical tests on
humans are carried out before validating an agent or biomarker as a new
medical diagnosis imaging.

During these stages, researchers need a set of data already available in several
existing systems. In addition, the search process generates new information and
knowledges to the community. Indeed, several operational systems and online
databases are used to trace, index, and provide essential information to researchers
and simplify the management of a research laboratory:
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e  Biobank databases which provide information on biological samples studied
during the search protocol (Alfaro-Almagro, 2018).

e  Animal facility management systems which provide information on small
animals such as breed, weight, age, gender, model and lineage.

e  Hospital Information Systems and Picture Archive and Communication
System which provide patient data (Silva, Costa, & Oliveira, 2012).

e  Materials for image acquisition which provide quantitative information on
image acquisition process.

On the other hand, new knowledges and information are generated during
the search protocol. They can be broken down into two categories. Experimental
quantitative data and qualitative operational data on the functioning of the search
protocol that assist the interpretation of quantitative finding (e.g., physical and
biological properties of the contrast agent or the biomarker). This kind of data is
at best saved in a Project Lifecycle Management system that keeps track of all the
information generated during the search project (e.g., BenchSys, (2016) and Siemens
Teamcenter (2018). Or at worst in a lab notebook or spreadsheet.

New knowledges take also the form of raw images acquired using a wide variety
of medical imaging techniques (e.g, PET, CT, MRI, EPR), and also images processed
using innovative image processing algorithms in order to detect the effect of studied
contrast agents and biomarkers on organisms, and be able to diagnose pathologies
as cancer, inflammation, etc.

Brutes and also processed images enrich the state-of-art in life imaging by
providing online image bases allowing researchers to analyze a larger number of
subjects, to test their image processing algorithms and hence to improve the statistical
quality of their reports. This requires the implementation of image bases to index
acquired images during research projects. We consider that a medical image may
be indirectly identified by a combination of a set of metadata as for example a
pathology, a contrast agent, and an organ. For that, we use all the metadata available
to index medical images.

Implementing image bases can also reduce the costs and the duration of
experimentations, and also proposing a new research paradigm in life imaging based
on the statistical analysis of big image sets, i.e., data-driven research. However, the
main obstacle to the implementation of image bases is the lack of storage resources
at laboratories level. Often at the end of a project, the images are kept only for
publications, then permanently deleted because of their volumes.

The “Atlas IDV” was implemented in the context of the project. Indeed, an
integrated imaging operational system based on sis4web (n.d.) and connected to
all systems and databases previously presented was developed. This leads to a base
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Figure 1. Atlas IDV architecture
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of indexed images using all operational and experimental information of the search
protocol allowed the images’ acquisition. The fact of having this mass of information
related to the images makes feasible their re-use by researchers in future projects
and feeds a large common base of images.

As depicted in Figure 1, at the end of the image acquisition process, a variety
of raw images files are synchronized between acquisition servers and the storage
server based on rsync (Mayhew, 2001).

Since health data are considered sensitive by the General Data Protection
Reglement (Zerlang, 2017). Storing and processing health data requires a high level
of security. Consequently, a dedicated private cloud based virtual servers have been
used in the project (Krautheim, 2009).

The raw images have in their header a set of acquisition information (material,
modality, date, time) and quantitative data (resolution, scale, etc.). These metadata
are extracted from the DICOM and Bruker headers to be saved in the image base.
In addition, the raw images are compressed using image compression algorithms in
order to facilitate their transfer and visualization using web-based interfaces during
collaborative work.
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During the images storage process, researchers are asked to provide additional
information such as: study objective, pathology studied, identifier of the object
studied, the imaging agent characteristics, image processing algorithm, and physical
measurements. These additional information enables the images base to query remote
databases and operational systems via APIs in order to enrich images metadata. The
proposed method based on internal and controlled enrichment allows researchers
to index images through several attributes and be able to retrieve images via simple
queries on a single attribute or via advanced filters on several attributes.

This architecture scheme is repeated on a multitude of laboratories and platforms
within the project perimeter. However, slight modifications have been introduced in
order to manage the volume and the velocity of acquired images and to face local
network constraints. Indeed, in some cases, it was necessary to add an intermediate
backup server on site which is synchronized in the night with the cloud so as not
to congest the local network.

Periodically the compressed images and their metadata are extracted from
distributed images bases, then integrated into a common images base. The images
base stored in the cloud is accessible to all researchers on read only.

The export from private images bases is done in N3 format. The subject represents
the image id, the predicate represents the attribute id, and the object represents
the value. Records are stored in a csv file. Afterwards, the different csv files are
imported into a single public NOSQL database accessible to researchers in order
to make image analytics.

3. BUILDING THE DEDICATED CLOUD INFRASTRUCTURE

The current trend is to minimize the number of hosting datacenters while increasing
the quality of data access. This principle is based essentially on the pooling of the
resources of the various actors involved in the production and processing of health
data. Another trend related to the previous one is to graft a scientific computing brick
to the health data hosting part. This correlation will reduce the processing time of
the data (reconciliation of the computing with the data) and minimize the security
prerequisites for the transport of the health data between the hosting datacenters
and those of processing. The adoption of the Cloud in the project is motivated, inter
alia, by these two points.

Cloud computing technology potentially offers permanent access to data and
services, from any device and anywhere atany time. Basically, it considers everything
“as a service”: computing, storage, network, and infrastructure. It pushes the
user at the center of our concern by allowing him to deploy software on-demand,
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development platforms or even the infrastructure he needs. Currently, this is exactly
what scientific project partners ask for.

The goal is to build a software ecosystem and offer a research support service
to make the best use of large infrastructures. This allows partners to access a wide
range of software tools and also a large amount of image sets. The aim is also to
ensure maximum comfort for researchers and engineers, i.e. do not disrupt their
current working methods.

3.1 Technical Architecture

In order to be able to carry out the project’s private cloud, we had to work in
collaboration with the IT directors of Université Paris Descartes since the Cloud
infrastructure is physically located there. We began by reinforcing existing hardware
so that it could support the needs and expectations of researchers. In 2015, there was
an investment of 1 million euros to reach a total of 4500 cores and 3 PB of storage
to setup a private cloud and renovate two clusters.

Conventionally, a virtualization-based solution has been chosen. This technique
has the advantage of facilitating the cohabitation of several (operating) systems on
the same physical support by providing complete isolation between systems and
mutualized use of the resources of the system. The OpenNebula hypervisor, with a
technical support, has been set up. OpenNebula operates as an orchestrator of the
storage, network, supervision and security layers (Giovani, 2012).

Basically, a cloud-based solution consists in providing infrastructure, platform
and software as services. Technically speaking, different templates of virtual
machines (VM) are offered. These templates could be empty, i.e. containing only
the OS, or predefined, i.e. containing a certain number of pre-installed tools. The
selection of tools was not random; it was based on a survey carried out beforehand
nearby the researchers involved in the project (Abidi, Cerin, Geldwerth-Feniger,
& Lafaille, 2015).

Thus, we have set up VM templates and, for each of these templates, a virtual
disk is defined, and an operating system is installed in this virtual disk. Different
tools can be added to this system. Thereafter, one or many instances could be
created from these templates. Each of these instances is associated with mandatory
characteristics such as its name, memory size, the number of virtual processors....
One of the interests of the cloud is precisely to offer this type of mechanism which
makes it possible to propose machines like a service i.e. “Infrastructure as a Service”.

The Figure 2 summarizes the architecture adopted for the construction of the
IDV cloud.
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Figure 2. The different layers of the IDV cloud
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As shown in Figure 3, we have the possibility to use different virtual machines,
simply through the browser. The researcher can deploy one or more virtual machines
in one click and customize them with impressive characteristics (up to 64Go of
memory, up to 20To of storage...).

Each researcher is the administrator of his own virtual machines. He have the
possibility to customize his working environment, add/remove tools, add/remove
users. There are also different ways to access the VM and work on it (VNC!, SSH2....).

This first phase of the CUMULUS life allows to use the same tools as those used
in laboratories but in a new operating context thanks to the deployment of virtual
machines instead of machines isolated and disseminated in different physical places.
The CUMULUS masks a lot of technical details. The centralization of data in the
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Figure 3. Different operating systems are running in the browser’s user

8 Windows Server2012R2

S G EE T

L it
M T3 T ot

Cloud rationalizes the storage and avoid the multiplication of ad-hoc solutions to
archive the data in the short term. This also facilitates access to data for the current
atlas.

3.2 Discussion
3.2.1 High Performance Computing and Big-Data Convergence

Regarding the point of view of infrastructures for research in the academic sector,
we still observe that large clusters, inherited from the HPC (High Performance
Computing) community are still dominant. Large scale systems, such as clusters and
clouds are systems with unprecedented amounts of hardware (>1M cores, >100 PB
storage, > 100 Gbits/s interconnect). An ultra-large-scale system is an ecosystem
with hardware, plus a large number of lines of source code, plus a large number of
users, plus a large volume of data. In this context we have new issues, among them,
how to build systems across multiple organizations; how to deal with conflicting
purposes and needs; how to deal with heterogeneous parts with complex dependencies
and emergent properties; how to deal with a continuous evolving; how to deal with
software, hardware and human failures that are the norm, not the exception? Many
answers can be found in the recent report from the Exascale (Asch & Moore, 2018)
group of organizations, including academics and industrial partners.
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Above all these considerations we still have issues regarding the problem of
evaluating a large-scale system. If we evaluate clouds according to the metrics of
the clusters, the comparison is not fair! We may evaluate both of them according
to the productivity factor. Productivity traditionally refers to the ratio between the
quantity of software produced and the cost spent for it. But many factors influence
the decision, among them the programming language used, the program size, the
experience of programmers and design personnel, the novelty of requirements, the
complexity of the program and its data, the use of structured programming methods,
the program class or the distribution method, the program type of the application
area, the tools and environmental conditions, the maintaining of existing programs
or systems, the reusing of existing modules and standard designs, etc

If we just make a focus on the programming language used, we may notice that
the community of big-data do not use the same programming languages than the
HPC community. However, the Harp project (Hadoop and Collective Communication
for Iterative Computation) from the university of Indiana (n.d.) is a project that tries
to “merge” two universes. The initial motivation is that communication patterns
are not abstracted and defined in Hadoop, Pregel/Giraph, Spark. In contrary, MPI
(Message Passing Interface) which is very used in HPC, has very fine grain based
(collective) communication primitives (based on arrays and buffers).

Then Harp provides data abstractions and communication abstractions on top
of them. It can be plugged into Hadoop runtime to enable efficient in-memory
communication to avoid HDFS read/write. Harp works as a plugin in Hadoop.
The goal is to make Hadoop cluster can schedule original MapReduce jobs and
Map-Collective jobs at the same time. Collective communication is defined as
movement of partitions within tables which are among the core data object. Collective
communication requires synchronization. Hadoop scheduler is modified to schedule
tasks in a bulk synchronous style (Wikipedia, n.d.) which allows predictions of the
execution time (and in the theory). Harp also provides with fault tolerance with
checkpointing. In other words, Harp attempts to realize a convergence between
two layers in a system i.e. the programming layer (Hadoop like for the community
of big-data) and efficient communication (MPI collective like communication for
the community of HPC).

3.2.2 Cloud Computing

At this time the CUMULUS Cloud has been used to offer resources (CPU, RAM,
disks...) to the project. But any project is faced to challenges such as communication
and collaboration between product management, software development, integration,
testing, deployment to cite a few. Our research group is currently focusing on the
best methods and practices to put at the disposal of the IDV community, inside
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CUMULUS, to deal with such issues that are not new issues. Indeed, we illustrate
DevOps approaches that seems to be useful in this context because they are becoming
increasingly widespread, especially in the community of practitioners.

DevOps (the contraction of Development and Operations) aims to establish a
culture and environment where building, testing, and releasing software can happen
rapidly, frequently, and more reliably (Samovskiy, 2010). There is no single “DevOps
tool” but people consider “DevOps toolchains” consisting of multiple tools. Tools such
as Docker (containerization), Jenkins (continuous integration), Puppet (Infrastructure
as Code), Vagrant (virtualization platform) and Ansible (provisioning) -among many
others- are often used and frequently referenced in DevOps discussions.

Let us comment two papers that exemplify the interest of DevOps approaches
and DevOps toolchains to simplify the tasks of developers in large project. This part
of the discussion is not addressed towards end-users but to developers in a broad
sense. Final users do nothing, they just have to launch a script, in the worst case, if
the job is not fully automated.

Stillwell & Coutinho (2015) deal with the problem to support the integration effort
of HARNESS, an EU FP7 project. HARNESS is a multi-partner research project
intended to bring the power of heterogeneous resources to the cloud. It consists of
a number of different services and technologies that interact with the OpenStack
cloud computing platform at various levels. Many of these components are being
developed independently by different teams at different locations across Europe
and keeping the work fully integrated is a challenge. Authors use a combination of
Vagrant based virtual machines, Docker containers, and Ansible playbooks to provide
aconsistent and up-to-date environment to each developer. The same playbooks used
to configure local virtual machines are also used to manage a static testbed with
heterogeneous compute and storage devices, and to automate ephemeral larger-scale
deployments to Grid’5000 (2017).

Indeed, authors present a development and operations (DevOps) workflow
that allows: (i) teams of developers to work autonomously on specific parts of the
software architecture; (ii) automated testing of individual projects as well as the
integrated system deployments; and (iii) reproducible automated deployment on
heterogeneous and large-scale testbeds. For that purpose, the authors introduce first
a high-level view of the HARNESS DevOps workflow. Second, they describe how
various deployment tools help to achieve reproducibility and why this is important
for testing and quality assurance. The next topic covered in the article is to report
the automated testing infrastructure and the novel methodology for testing full
systems deployments. Finally, they describe two platforms where HARNESS is
being deployed. To conclude, the paper demonstrates how to organize a research on
DevOps approaches that serve multiple people, being working on the same project.
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The second paper we would like to introduce is the very recent paper by Abidi,
Saad, & Cérin (2017). In this paper, the authors are interested to deploying, in a
multi-Cloud architecture, an infrastructure using the publish-subscribe paradigm
for orchestrating the components of a framework that execute scientific workflows
in highly heterogeneous and dynamic environments. More specifically they are in
search of the adequate approaches to build deployment systems for heterogeneous
and highly dynamic environments. The general objective is to offer « Workflow as
a Service », as the concrete view, but we could imagine that the objective is to offer
« X as a service », X being a utility function.

At least, we would like to mention the RosettaHub (n.d.) initiative that aims
to facilitate the access to Amazon (AWS) computing and storage resources, from
a basic user point of view. Services, now available free of charge to students and
faculty members, include access to supercomputers, high-performance computing
clusters, GPU and FPGA-accelerated machines, managed Hadoop and Spark clusters,
storage services, databases and warehouses for big data, platforms for IoT and fog
computing, machine learning services, etc.

The RosettaHUB platform creates, federates, manages and supervises the AWS
accounts of some fifty higher education institutions around the world, totaling nearly
12,000 active AWS accounts of students and teachers. researchers. RosettaHUB
also aims to establish a global, social and collaborative scientific meta-cloud. It
simplifies and democratizes access to the infrastructures and tools needed for data
science, big data and machine learning. Environments and tools such as Jupyter,
RStudio, Zeppelin, TensorFlow, Spark, etc. are made instantly available as services
to thousands of people. RosettaHUB enables real-time collaboration and sets up
mechanisms for sharing all the scientific or educational artifacts produced on a cloud.

The platform exposes an API (Application Programming Interface) and federation
model for clouds. Combined with the portability provided by the systematic use of
container technologies (Docker), it makes possible and simple the transition from
a ‘classical’ system (desktop like) to the cloud. The platform also exposes an API
and federation model for compute engines and communicates R, Python, Scala,
Mathematica, etc. in memory. through a common object model and deep integration
of different virtual machines. RosettaHUB exposes above these federation models
reactive programming frameworks for creating and publishing in multi-cloud and
multi-language mode (R / Python / Scala) responsive microservices, collaborative
interactive web interfaces, spreadsheets scientific and collaborative, data analysis
workflows, etc. RosettaHUB’s meta-formations capture all the dependencies of
such data science / ML-oriented services and applications, allowing them to be
reproduced and shared in one click. These meta-formations provide a foundation for
reproducible research which is yet another issue that we need to address in the future.
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3.2.3 Summary of the Work at the Infrastructure Level

The authors introduce a use case and they describe the different components of
their DevOps architecture. They use the CUMULUS Cloud located at Université
Sorbonne Paris Cité as the user’s site. From CUMULUS the user starts a Vagrant
script and this script automates all the deployment, installation, provisioning steps
on multiple sites of the Grid’5000 tested for executing an application inside an
infrastructure... that is also deploying. This is the key challenging point: how to
automate the deployment of an infrastructure inside an infrastructure? DevOps
approaches solve the problems in a convenient way.

4. CROWDSOURCING

Crowdsourcing is the process of outsourcing numerous tasks to an undefined, and
generally large, network of people (the crowd). It is in widespread use in academic
and industrial projects. Typical applications for the crowd include data collection,
annotation or evaluation. For a wide array of tasks, the crowdsourcing paradigm
has been shown to hold (Kittur, Chi & Suh, 2008).

Inresearch domain, crowdsourcing platforms are a popular choice for researchers
toreplace expensive domain experts with crowd labour. Itis particularly used to gather
annotations quickly at scale. The most popular crowdsourcing scientific task is the
categorization of galaxies (Raddick et al., 2013). In healthcare, great potential has
been shown for various biomedical tasks, such as determination of protein folding
(Eibenetal.,2012) and classification of malaria-infected red blood cells (Mavandadi
et al., 2012). Crowdsourcing has also been used for clinical diagnosis (Nguyen et
al., 2012) and for drug discovery (Lessl, Bryans, Richards & Asadullah, 2011).

Crowdsourcing was also recently used for image annotation in medical imaging.
Many results showed that the annotation, via crowdsourcing, of a large amount of
biomedical images can help at image classification. It has been shown in (Eickhoff,
2014), that the crowd can be much more effectively used to enhance the experts’
performance and efficiency in detecting malignant breast cancer in medical images.
In (Leifman, Swedish, Roesch, & Raskar, 2015), it has been demonstrated that
crowdsourcing can be an effective, viable and inexpensive method for the preliminary
analysis of retinal images. The work of (Herrera, Foncubierta-Rodriguez, Markonis,
Schaer, & Miiller, 2014) is based on the crowdsourcing for improving the quality
of an automatic modality classification task based on the visual information of the
images and the text of the figure captions. It particularly consists in verifying, by users
familiar with medical images, the automatically detected modality of ImageCLEFmed
images, and in reclassifying the images identified as wrongly classified.
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In (Irshad, Montaser, Waltz, Bucur, Nowak, Dong, Knoblauch, & Beck, 2015),
the crowdsourcing has been used for rapidly obtaining annotations by using the
CrowdFlower platform for two core tasks in computational pathology: nucleus
detection and nucleus segmentation. The results of this work show that the obtained
annotations from crowdsourced non-expert-derived scores perform at a similar
level to expert-derived scores and automated methods for nucleus detection and
segmentation.

In our work and as part of the research project, we developed a crowdsourcing-
based platform for the annotation of biomedical images. This platform referred
as CrowdIDYV, is an external module to the IDV atlas, that completes its semantic
enrichment via the robust annotation scheme and the linked open data. A similar
existing framework for the semantic enrichment of biomedical images, referred as
SEBI, also includes a crowd-annotation module for biomedical images (Bukhari,
Krauthammer, & Baker, 2014). Our CrowdIDV platform is a collaborative platform
that is intended for students to annotate the biomedical images published by
their expert researchers of the USPC community. It can also be considered as an
educational platform.

The researchers or experts, referred as imagers, are the requesters of the
collaborative platform; and the students, referred as the annotators, are the crowders
or participants.

As depicted in Figure 4, the imagers submit their annotation tasks and the
annotators contribute to the annotation of the published images. The imagers and
annotators must be registered via this platform.

In order to have relevant annotations, each imager submits its tasks for only its
students. For instance, a biologist researcher publishes its images for only biologist
students. To do so, students have access to a given task with a specific code given
by its imager.

CrowdIDV incorporates algorithmic part to ensure the good quality of the
collected annotations by students. We specifically developed an approach to
validate the annotation input from various annotators. Our approach, inspired by
Apriori (Agrawal & Srikant, 1994), the classic algorithm to mine frequent itemsets,
consists in extracting the most frequent annotations for each published image while
considering the confidence of the annotators. Indeed, at the annotation process,
the student associates its confidence with the annotation he proposes (confident,
high confident or hesitant). To do so, we follow these steps: First, we collect the
annotations entered by students (or users). We assume that the annotation task is
defined by a query image. To apply the Apriori algorithm, we model each image as
a transaction database, where each transaction corresponds to student’” annotations
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Figure 4. CrowdIDV architecture
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and then the annotations to the Apriori algorithm items. We recall that the Apriori
algorithm have been proposed for generating association rules. The key idea of the
algorithm is to begin by generating frequent itemsets with just one item (1-itemsets)
and to recursively generate frequent itemsets with 2 items, then frequent 3-itemsets
and so on until we have generated frequent itemsets of all sizes.

In our work, we use the Apriori algorithm to generate the frequent itemsets that
represent the annotations. A wide variety of frequent itemsets mining algorithms
exist in the literature such as Eclat, TreeProjection and FP-growth (Aggarwal,
Bhuiyan, & Hasan, 2014). Apriori is the most commonly used algorithm and is a
popular starting point for frequent itemset study (Heaton, 2016). Using Apriori, we
consider the confidence of users at the generation of the frequent itemsets. The idea
is to associate to each transaction (and then each user) a probability measure that
corresponds to the user confidence. Consequently, only annotations resulting from
this validation algorithm are considered and then proposed to the imager. This last
can then lock the annotations if satisfied by the result or lets its images published
for more annotations if not satisfied.

As future work, we will assess the accuracy of the annotations established by
the crowd. Accordingly, we intend to consider the historical participation of each
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annotator to further estimate the error rate of annotations and also for rewarding
students. The reward for students could receive credits (EU project for example).
CrowdIDV is currently deployed in IDV cloud. The next step is testing the platform
by the community and then validate our approach and prepare the eventual enhancing
steps. Once done, the collected annotations from CrowdIDV will be integrated in the
IDV Atlas as triplestore for further activities of enrichment with the linked open data.

5. LINKED OPEN DATA BASED SEMANTIC ENRICHMENT

Today, the clinicians deeply rely on images for diagnosis, treatment planning and
follow up. In fact, they deal with complex and heterogeneous data including image
annotations allowing retrieving those images. In the previous section, we discussed a
way to provide the annotations and enrichment of medical images using crowdsourcing
paradigm in the IDV platform.

In other side, there exist other kind of data related to multi-modal and multi-scale
life imaging including text, pre-clinical data and images of cells etc. Therefore,
the production of life imaging is exponential. However, different banks of images
are stored in their acquisition place, and such spatial fragmentation leads to under
exploitation of those available huge amount of data where doctors and biologists do
not collaborate and operate on their respective type of images. Then, the aim of the
project is to allow medical scientists of pre-clinical and clinical researchers talking
each through the fusion of big images sets (Dong & Srivastava, 2015) by using
semantic interlinking between different types of images (Howe, Franklin, Haas,
Kraska, & Ullman, 2017). So, the challenge is to gather richer medical information
by connecting clinical images with pre-clinical images.

For clinicians, the aim is to enrich their clinical medical data and images with
pre-clinical data and images, and vise versa for biologist. To do so, we use the
Linked Data concept (Auer, Berners-Lee, Bizer, Capadisli, Heath, & Lehmann,
2017) (i.e., using the Web to create typed links between data from different sources)
is a first step towards semantic-based data retrieval for semantic enrichment in life
imaging domain using ontology mapping (Arnold & Rahm, 2014). Linked Data has
the potential to provide easier access to significantly growing, publicly available
related data sets, such as those in the healthcare domain (Sonntag, Wennerberg &
Zillner, 2010).

Furthermore, the image interlinking does not deal only with proprietary data and
images but may use other publicly available data called open data sources such as
published data sets (Données publiques, n.d.) and worldwide ontologies including
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Foaf (n.d.), dbpedia (n.d.), or medical ontologies (Radiology Lexicon, n.d.; National
Cancer Institute Thesaurus, n.d.; Cell Ontology, n.d., ... etc.). Consequently, the
project aims to use Linked Open Data (LOD) for life imaging.

Linked Data is essentially based on the RDF representation format for data
representation, where the data can be linked using RDF/OWL links developed by
W3C’s Semantic Web Consortium, that become available during an advanced medical
engineering process. In this project, we investigate how medical images and linked
data sets can be used to identify interrelations that are relevant for annotating and
searching medical images using RDF/OWL (W3C, 2004) for image representation
though image annotations and SPARQL language for querying different data
sources that are heterogeneous (Chekol & Pirro, 2016) in order to search adequate
data, and using ontology mapping process to discover the link between data (Mao,
Peng, Spring, 2010) and (Verhoosel, Bekkum & Evert, 2015). Consequently, it is
helping to enhance the patient diagnostics. As the produced images are massive, we
are using new technologies such as Apache Spark (Amplab, 2018) (Zaharia Xin,
Wendell, Das, Armbrust, Dave, Meng, Rosen, Venkataraman,Franklin, Ghodsi,
Gonzalez, Shenker & Stoica, 2016)(Engle, Lupher, Xin, Zaharia, Franklin, Shenker
& Stoica, 2012) and provide innovative algorithms related to Linked Open Big
Images (LOBI), we wish to introduce.

Moreover, with the widespread use of PACS in the hospitals, the amount of
medical image data is rapidly increasing (Silva, Costa, & Oliveira, 2012). Thus, the
more efficient and effective retrieval methods are required for better management
of medical image information. So far, a variety of medical image retrieval systems
have been developed using either method (text-based or content-based) or combining
two methods (Qi & Snyder, 1999), (Miiller, Michoux, Bandon & Geissbuhler,
2004), and (Kyung-Hoon, Haejun, & Duckjoo, 2012). Each method has its own
advantages and disadvantages. Text-based method is widely used and fast, but it
requires precise annotation. Content-based approach provides semantic retrieval,
but effective and precise techniques still remains elusive. The existing method are
not handling the huge amount of data, in the project we are handling the volume
and the heterogeneous variety of data sources using new technologies for big data.

Next, we provide a motivation example related to life imaging in order to
enchich semantically data owner by solving the problem of semantic heterogeneity
of different data sources.

5.1. Motivating Example: Linking Life Imaging
In our work, we assume that linked data contributes to solving the problem of structural

heterogeneity as well as identifying entities to improve the quality of big data fusion
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results (Benbernou & Ouziri, 2017). Nevertheless, RDF and its URI mechanism
are not sufficient to solve the problem of semantic heterogeneity. For example,
consider two data sources related to life imaging, clinical image representing the
lung radiography of a patient namely Bob and a pre-clinical image representing an
image of a cell extracted from human lung, as depicted in Figure 5 (All data sources
are represented in RDF data). The challenge of our work is to connect clinical and
pre-clinical images. For this aim, the images are annotated by doctors and biologists
(or using a crowdsourcing system described previously). In the clinical source (at
the top left side) is an IRM medical imaging on lung of a patient leaving in Paris
area. A cancer is diagnosticated in the image. The second data source which is pre-
clinical image represents a human cell infected with pollen of hazel. The annotation
process generates databases containing descriptions of medical images.

Clinical and pre-clinical images are then linked through their respective databases.
Linking can be made using direct connections between contents of databases or via
intermediate other data sources namely open data sources dealing with air quality data.

In Figure 5, the concepts describing life imaging of data sources ds1 and ds2
are Human and Cell, respectively. The query over data sources is to retrieve all
information related to the patient Bob.

Using an inference mechanism on clinical data source, we can infer only
the knowledge Bob has a cancer. Such knowledge is incomplete because of the
heterogeneity of the terminology used to describe the data from preclinical and

Figure 5. Example of linked data in life imaging
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clinical sources and open data sources. Once a linking is processed between three
data sources through entity resolution method between Paris and dept 75, Pollen
P10 and Hazel related to the same entity, the query result becomes Complete result
with entity resolution= {Bob has cancer, and is living in Paris having pollen P10
and this type of pollen is hazel exists only in Paris and may can be applied on
him a medicine M25 to be cured because of its application on human cell C20},
Patient(P15) and Patient (Bob) are dealing with the same entity Bob. The entity
resolution (ER) (Bhattacharya & Getoor, 2017), also known as record linkage or
deduplication aims at cleaning a database by identifying tuples that represent the
same external entity (Whang, Marmaros, & Garcia-Molina, 2013) and (Firmani,
Saha, & Srivastava, 2016).

5.2. Open MEDICAL DATA and Semantics
Representation (RDF and OWL)

RDF is a standard data model, proposed by W3C for representing semantic Web
data. RDF data is usually stored as statements in terms of triples subject, predicate,
object, representing arelationship, denoted by the predicate, between the subject and
the object. Subjects and predicates in triples are URIs when objects can be either
URIs or literal values. An RDF data set forms a directed graph, where subjects and
objects are vertices and predicates are labels on the directed edges from subjects to
objects. OWL is a Semantic Web language designed to represent rich and complex
knowledge about things, groups of things, and relations between things. It is a
language allowing to represent knowledge for authoring ontology. An ontology a
formal way to describe taxonomies and classification networks, it is a structuration
of knowledge for various domains. The OWL languages are characterized by formal
semantics based on Description logic [Baader, Calvanese, McGuiness, Nardi,
Patel-Schneider, 2003]. The logical approach is used to verify the consistency of
the knowledge or to make implicit knowledge explicit. Consider the data sources
displayed in Figure 5, in Figure 6 is depicted its RDF knowledge representation of
clinical data sources ds1 as facts i.e., Bob is-type of Patient, Bob has-id-echo 1E4,
Bob is-living adr03, adr3 in-city Paris etc.

5.3. Semantic Linking of Life Imaging
Data for Semantic Enrichment

In this section we will show the reasoning mechanism we can apply on different data

sources to discover new knowledge and therefore enrich semantically the owner data.
Life imaging data sources are linked at two levels: data level and semantic level:
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Figure 6. An example of life imaging data in RDF graph
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e  Atthe datalevel, when querying data sources, the data sources linking process
aims to identify the same real-life entities (such as patients, a human organ)
and connect them using the owl relationship sameAs. This process is named
Entity Resolution (ER). The ER is the task of disambiguating manifestations
of real world entities in various resources by linking through inference across
networks and semantic relationships in application (ontology alignment)
(Nentwig, Hartung, Ngomo, & Rahm, 2017) and (Shvaiko & Euzenat, 2013)
and (Cheatham, Cruz, Euzenat, Pesquita, 2017).

e At the semantic level, in the era of big data and life imaging, the need for
high quality entity resolution is growing as we are overwhelming with more
and more data that needs to be integrated (data fusion), aligned and matched
before further utility can be extracted. Therefore, achieving inferences across
the networks using semantic relationships between entities for a better high
quality entity resolution become a great challenge. The aim of the semantic
linking is to make explicit the implicit data across the network, thereby
enriching life imaging semantically. The semantic linking is achieved using
appropriate inference mechanisms to deal with big data and at the same time
cleaning the big data produced when processing data fusion (Benbernou &
Ouziri 2017).

In order, to reconcile entities making entity resolution, we present in this

section through an example, the inference mechanism that can be used to connect
all heterogeneous RDF fragments of the same entity based on semantics and how
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the enrichment of life imaging is processed. At the semantic level, concepts that
are used to describe data sources are linked using semantic relationships (Shvaiko
& Euzenat, 2013).

For illustration, Figure 7 presents three RDF fragments of the use case depicted
in Figure 5, where concepts, describing life imaging, of datasources ds1 and ds2
are Human and Cell, respectively, data source ds3 is describing open data related
to AirQuality, as well as two ontologies foaf and dbpedia as open data. The figure
shows how the semantic linking between all those five sources using RDF/OWL
languages is established. Some knowledge are extracted following the semantic
linking. Furthermore, the entity resolution is operating at the conceptual (semantic)
and entity (data) level. The W3C has defined axioms to make the semantic connections
between RDFS and OWL standards. The most common are rdfs:subClassOf,
owl:subClassOf, owl:equivalentClass and owl:disjointWith as pointed out by red
and blue lines in Figure 7. In what follow we explain the inference reasoning that
can be applied to discover new knowledge:

The RDF data are represented i.e., serialized by facts, some of them are listed:
(1)dsl:Bobisadsl:patient and is living atds1:adr03 (2) ds1:adr03 inCity ds1:Paris
(3) ds3:adr03 location ds3:dept75 (4) dsl:Paris sameAs ds3:dept75 (5) ds2:C20
belongTo ds2:P15 (6)ds2:C20 infection ds2:Hazel (7) ds2:Hazel sameAs ds3:pl10

Figure 7. An example of how the life imaging data sources and open data are linked
together using RDF/OWL
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(8) ds3:p10 propagate ds3:adr03 (9) ds2:C20 infection ds2:Hazel. For instance the
meaning of facts 7, the concept hazel is same as the concept p10, for fact 8, the
concept p10 is propagated to adr03.

Besides, all those facts are along with business rules called also domain rules
provided by the expert domain to make data compliant with them.

Therefore, the inference mechanism is processed as follow:The fact (4) when
propagated (linked) to (2) and (3) infers that ds1:adr03 and ds3:adr03 are the same
address and the given domain rule: there can only one address street at a city. The
semantic linking in fact (7) when propagated to fact (8) infers that the adrO3 is
infected by hazel. By considering the fact (8) and given the domain rule: there can
only place infected by a Hazel, the three resolutions can propagate to fact (1) and
infer the place Bob is living is infected by Hazel. This resolution when propagate
to fact (9) and (5) infers ds1:Bob and ds3:p15 is the same patient. And then the
medicine can be applied to the patient to be cured.

The entity resolution is operating at the conceptual (semantic) and entity (data)
level. The W3C has defined axioms to make the semantic connections between
RDEFS and OWL standards. The most common are rdfs:subClassOf, owl:subClassOf,
owl:equivalentClass and owl:disjointWith as depicted in Figure 7. The inference
mechanism is using such basic semantic connections to infer connections as well
as operators of description logics to infer other knowledge for instance (1) dbpedia:
City C —foaf: Human (2) ds1: Capital C dbpedia: City (3) ds2: Hazel C ds2: p10.
For more details of different propagation that can be applied in the context of big
data can be found in (Benbernou, Huang, Ouziri, 2017).

Once the owner data is enriched, it is ready to be translated to the image analytics
process module discussed in the next section.

6. IMAGE ANALYTICS

In order to simplify the analysis for the experts, we present in this section through
use case in image analytics our contributions in scalable machine learning. This
task is important to simplify the inference mechanism that can be used to connect
all heterogeneous RDF fragments presented in section 5.3. The global purpose is
the enrichment of the expert knowledge.

In fluorescent medical imaging, a biological structure (e.g. gene, chromosome,
cell, tissue or organ) is visualised by the expression levels of so-called marker proteins
which attach specifically to this structure. A fundamental question in cellular biology
is the identification of the regions of homogenous pixels delimited by these marker
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proteins via image segmentation by unsupervised learning. A segmented image
is the partition of these pixels into the clusters induced by a learning method. We
focus on the class of modal clustering methods where clusters are defined in terms
of the local modes of the probability density function which generates the data.
The most well-known model clustering method is the k-means clustering (Lloyd,
1982). A segmentation based on solely on the fluorescence level is inadequate as the
fluorescence level of marker proteins varies according to multiple factors, including
most importantly the unavoidable natural, biological variation. A more adaptive
segmentation would take into account other important data variables derived from
the image other than the fluorescence levels, e.g. spatial localisation, topology etc.
The k-means clustering currently used is capable of partitioning multi-dimensional
variables but the resulting clusters are constrained to be ellipsoidal. These constraints
imply that the k-means clustering is not well-suited to complex medical images.
In our work, we decided to focus on density based algorithm, the most famous in
that category is the DBScan (He, Tan, Luo, Feng & Fan, 2014) algorithm which is
a density based algorithm which takes two parameters, ~” which defines the radius
of the hypersphere and minPts, which is the required number of points to consider
the hypervolume as dense enough. Each times the density threshold is reached, dots
are considered in the same clusters, the process is extended to catching points until
the density is under the threshold. Rest of the points are considered as noise. One
notable benefit of this algorithm is to detect automatically number of clusters with
random shape but it remains hard to tuned efficiently.

On the other hand, Mean-Shift clusters are defined in a more flexible manner as
the regions where these multi-dimensional variables are the densest. This leaves the
clusters to evolve according to the local characteristics, which is well-suited to the
task of delimiting pixels for complex biological structures. Mathematically these
clusters are the basins of attraction to the local modes of the probability density
function. For an image, each pixel is associated with a local mode by following the
gradient ascent of the density function, and all the pixels associated with the same
mode form a segmented region. The gradient ascent is estimated by the sequences
of the nearest neighbour local means (Fukunaga & Hostetler, 1975).

On the other hand, Mean-Shift clusters are defined in a more flexible manner as
the regions where these multi-dimensional variables are the densest. This leaves the
clusters to evolve according to the local characteristics, which is well-suited to the
task of delimiting pixels for complex biological structures. Mathematically these
clusters are the basins of attraction to the local modes of the probability density
function. For an image, each pixel is associated with a local mode by following the
gradient ascent of the density function, and all the pixels associated with the same
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mode form a segmented region. The gradient ascent is estimated by the sequences
of the nearest neighbour local means (Fukunaga & Hostetler, 1975).

In our recent work, we demonstrated that the nearest neighbour Mean-Shift is
effective for 2-dimensional non-medical images of a modest resolution. The factor
which hinders a more widespread use of the Mean-Shift is that the sequential
calculation of the nearest neighbours (via the dissimilarity matrix) quickly becomes
computationally too onerous. To respond to the challenge, we have implemented a
massively distributed version of it in the Spark-Scala Big Data ecosystem (Duong,
Beck, Azzag, & Lebbah, 2016) and (Beck, Duong, Azzag & Lebbah, 2016).

We implement our algorithm in Scala because it is the native language in
which Spark was implemented and so allows for optimal performance. Apache
Spark is a fast-general purpose cluster computing system based on a master-slaves’
architecture. The primary abstraction of Spark is a distributed collection of items
called a Resilient Distributed Dataset (RDD) on which we apply the $map$ and
$reduce$ functions. Calculation times have been reduced by 10- to 100-fold, due
notably to a rapid choice of the number of nearest neighbours and the calculation of
approximate nearest neighbours via the random scalar projections of the “locality
sensitive hashing” method (Indyk & Motwani, 1998) and (Slaney & Casey, 2008).

A partof experiments were realized on the Grid’ 5000 testbed which is the French
national testbed for computer science research. It allows the deployment of a user’s
own operating system within the Grid’ 5000 hardware. We use a dedicated Spark Linux
imagel optimized for Grid’5000 where Apache Spark is deployed on top of Hadoop
YARN. Only the deployment of the image is automatized: we manually reserved
the nodes as well as manually providing the Spark cluster with our executable code.
For production purposes with CUMULUS we hide the configuration, deployment,
provision of the services starting with a pool of dynamically allocated resources.

Asmentioned previously, image segmentation can be made more precise by taking
to account other available information. The Mean-Shift, as we have implemented
it, uses the spatial localisation of dense data regions. Spatial coordinates are a
continuous variable and could be utilised as the Mean-Shift clustering has been
developed to treat continuous variables. On the other hand, incorporating categorical
variables (e.g. yes/no, A/B/C) whenever intermediate values which have no intuitive
interpretation is not yet feasible.

As future work, we propose to translate the successful technique for processing
categorical data in other clustering methods via the recoding of categorical variables
as a series of binary variables and replacing the mean with a median. Thus, we aim
to develop a Median-Shift clustering method that is capable of handling composite
data, consisting of a mixture of continuous and categorical variables, in the medical
imaging and Big Data contexts.
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7. CONCLUSION

We presented in this chapter a big data platform for enhancing life imaging activities
in the setting of a multidisciplinary project IDV. We developed an ecosystem to
the bio scientists and clinicians helping them to cooperate at the different levels
for enabling to augment the research perimeter of imaging scientists and the
extraction of new knowledge from the big multi-modal and multi-scale clinical and
preclinical images available within the university. The platform is offering different
services including sharing images in the same space, annotating their images using
crowdscourcing system, linking their images through linked data technology,
analysing their images, adding diagnostic and therapeutic value of new imaging
methods and biomarkers. Several perspectives and enhancements raised regarding
our experiences since the projects started three years ago, one can site enforcing
the ethical and privacy aspects when sharing images and results, enhancing the
multidisciplinary understanding through the platform still not mature and finally
enlarge the platform to the international collaborations.
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