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ABSTRACT
It is often critical to accurately model the upper tail behaviour of
a random process. Nonparametric density estimation methods are
commonly implemented as exploratory data analysis techniques for
this purpose and can avoid model specification biases implied by
using parametric estimators. In particular, kernel-based estimators
place minimal assumptions on the data, and provide improved visu-
alisation over scatterplots and histograms. However kernel density
estimators can performpoorlywhen estimating tail behaviour above
a threshold, and can over-emphasise bumps in the density for heavy
tailed data. We develop a transformation kernel density estimator
which is able to handle heavy tailed and bounded data, and is robust
to threshold choice.We derive closed formexpressions for its asymp-
totic bias and variance, which demonstrate its good performance in
the tail region. Finite sample performance is illustrated in numerical
studies, and in an expanded analysis of the performance of global
climate models.
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1. Introduction

The extreme values (very large or very small values) of a dataset are frequently of interest
as they are closely related to uncommon events with important consequences. For cli-
mate data, these tail events include heat waves (prolonged extreme high temperatures),
cold snaps (extreme low temperatures), floods (extreme high levels of waterways or tides
or waves), storms (extreme high wind speeds or amounts of precipitation) and droughts
(prolonged extreme low amounts of rainfall) (e.g. Kotz and Nadarajah 2000; Coles 2001).

Suppose that X = (X1, . . . ,Xd)
� is a d-dimensional random vector with cumulative

distribution function (c.d.f.) FX and probability density function (p.d.f.) fX . A common
representation of the upper tail values arising from this distribution focuses on examining
those values which exceed some high threshold u = (u1, . . . , ud)�, which determines the
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support on which values of X are considered to be large. We can denote these upper tail
values by X[u] ≡ X |X > u, under which each marginal inequality must hold i.e. Xj > uj
for j = 1, . . . , d. Estimating the asymptotic tail behaviour of X is one of the standard goals
of extreme value theory.

In the simplest case of univariate extremes (d=1), common approaches to distribu-
tional tail estimation rely on parametric models, typically based on generalised extreme
value (GEV) or generalised Pareto distributions (GPD), for which numerous estima-
tion procedures are available. These methods include maximum likelihood (Prescott and
Walden 1980; Hosking 1985; Smith 1985; Macleod 1989), probability weighted moments
(Hosking, Wallis, and Wood 1985), maximum product spacing (Cheng and Amin 1983),
least squares estimation (Maritz and Munro 1967), estimation based on order statistics
and records (Hill 1975; Pickands 1975), the method of moments (Christopeit 1994) and
Bayesian estimation (Lye, Hapuarachchi, and Ryan 1993). As with all parametric estima-
tors, these approaches suffer from the possibility of misspecification, particularly when
the asymptotic GEV and GPD models cannot be assumed to hold. This potential can
be avoided by nonparametric estimation which does not make assumptions on particu-
lar parametric forms. See Markovich (2007, Chapter 3) for a summary of nonparametric
estimation of univariate heavy tailed densities.

For multivariate extremes (d>1), nonparametric estimation of indicators of extremal
dependence is an intensively studied field, and includes estimation of the Pickands or
extremal dependence function (Pickands 1975; Hall and Tajvidi 2000; Marcon, Padoan,
Naveau, and Muliere 2014), the tail dependence function (Huang 1992; Drees and
Huang 1998; Einmahl, Krajina, and Segers 2008, 2012), and the spectralmeasure (Einmahl,
de Haan, and Piterbarg 2001; Einmahl and Segers 2009; de Carvalho, Oumow, Segers, and
Warchoł 2013). The motivation for nonparametric estimators is stronger for multivariate
extremes than in the univariate case as there is no general parametric form to describe
the range of extremal behaviour of max-stable processes. This means that a choice of any
particular parametric family has a possibility of resulting in model misspecification.

In this article we focus on density estimation for data that exceed some upper quan-
tile of the data for which asymptotic, extreme value theory-derived models may not hold.
Hence our motivation differs from that in the traditional extreme value theory literature
in the sense that the our main primary interest here is inference at sub-asymptotic levels
i.e. around and slightly beyond the range of the observed data.

This manuscript proposes a new class of multivariate kernel-based nonparametric den-
sity estimators to model the upper tail behaviour of X, without having to pre-specify a
parametric family. Kernel density estimators are among the most widely used nonpara-
metric estimators (e.g. Silverman 1986; Wand and Jones 1995) and they possess excellent
visualisation properties which can naturally form part of an exploratory data analysis.
However, standard kernel estimators can produce spurious bumps in the estimated tails
of fX if it has heavy tails, as is particularly the case when analysing extremes and moder-
ate extremes. On the other hand, if we focus on the tail sample X[u], which is truncated at
the threshold u, a standard estimator of the tail density fX[u] is strongly influenced by the
boundary effects due to the truncated support, as well as the choice of this threshold.

Here we focus on modifications to standard kernel density estimation which attenu-
ate these spurious bumps, and accommodate a truncated support when estimating fX[u] .
Our approach is based on the standard identity fX[u](x) = fX(x)/F̄X(u) where F̄X(u) is
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the corresponding survival function. We estimate the complete density fX using trans-
formation kernel density estimation techniques (see e.g. Silverman 1986; Charpentier
and Flachaire 2015): this approach has the double advantage of being able to handle
bounded supported data as well as reducing the spurious bumps in the tail. Estimating
the normalisation constant F̄X(u) is straightforward once an estimator of fX is established.

While multivariate transformation estimators are a well-known method for complete
densities, our contribution consists of modifying them for the estimation of tail densi-
ties. We also supply new results for the pointwise bias and variance which describe the
behaviour of the estimator at the boundary and in the tails. In the context of moderate
extremes, this permits the construction and theoretical justification ofmore efficient kernel
based nonparametric density estimators for the tails of observed processes. It additionally
allows these estimators to be used within existing goodness-of-fit measures (e.g. Perkins,
Pitman, and Sisson 2013) in place of more poorly performing histogram estimates of tail
behaviour.

One may argue that in the univariate extreme value theory setup, the Pickands-
Balkema-de Haan theorem (Balkema and de Haan 1974; Pickands 1975) can be used. This
states that, under some mild conditions on the underlying c.d.f., all observations above
some large threshold u are well approximated by the GPD. We will show that our pro-
posed kernel estimator produces a comparable fit to the one produced by the GPD on the
exceedances and can even occasionally outperform it.

Nonparametric estimation of heavy-tail distribution via transformation kernel density
methods has previously been considered (e.g. Wand, Marron, and Ruppert 1991; Bolancé,
Guillen, and Nielsen 2003; Clements, Hurn, and Lindsay 2003). Buch-Larsen, Nielsen,
Guillén, and Bolancé (2005) introduced a class of transformation functions based on the
Champernowne distribution function as a generalisation of the shifted-power family func-
tions (of which the logarithm is the simplest case) to define a semiparametric estimation
procedure for heavy-tailed distributions. Density estimation based on this approach has
mainly been undertaken in the univariate setting, see e.g. Bolancé, Guillén, Gustafsson,
and Nielson (2012) and the references therein. In the bivariate setting Bolancé, Guillen,
Pelican, and Vernic (2008) proposed a transformation kernel estimation using product
kernels to estimate conditional tail expectations on an insurance claims datasets, while
Pitt and Guillen (2010) outline a method for bivariate density estimation via a weighted
likelihood (without performing any data analysis). Buch-Kromann, Guillén, Linton, and
Nielsen (2011) apply amultiplicative bias reductionmethod to amultivariate version of the
Champernowne transformation estimation procedure of Buch-Larsen et al. (2005), with
a normal scale vector method for bandwidth selection. This strategy can be compared
to taking a copula as an auxiliary function for density estimation, although this intro-
duces methodological complexity. Most of this work aims to improve the performance of
heavy-tailed distribution density estimators via optimisation of the transformation func-
tion (Buch-Kromann et al. 2011, Section 3.5). In contrast, in this article we focus on a
general method for multivariate bandwidth selection, by defining a consistent bandwidth
matrix selector rather than simply a vector selector. Furthermore, we treat the goodness-
of-fit problem of measuring a density estimate via reference to a hypothesised density for
model selection purposes.

The layout of this article is as follows. Our primary contribution is presented in
Section 2, which develops the transformation kernel estimator for tail density estimation,
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establishes its pointwise bias and variance (with proofs deferred to the Appendix) and
examines optimal bandwidth estimation. We also assess histogram based tail density esti-
mation, and develop the role of tail density estimators in goodness-of-fit (model selection)
procedures. In Section 3 we verify our results on finite samples for simulated data in
both univariate and multivariate settings, and in Section 4 we expand the work of Perkins
et al. (2013) by performing an analysis of 22 global climate models (GCMs) and assess how
well they are able to reproduce observed temperature extremes. Section 5 concludes with
a discussion.

2. Tail densities for upper tail values

2.1. Transformation tail density estimation

LetX1, . . . ,Xn be a random sample drawn from a common univariate distribution FX with
density fX . If fX has heavy tails, standard kernel estimators are susceptible to producing spu-
rious bumps in the tails of the density estimates, as they apply a fixed amount of smoothing
over the entire sample space. A common approach is to apply a transformation on the data
sample to reduce the inter-point distances in these upper tail values so that a global con-
stant smoothing is more appropriate.We focus on transformation kernel estimators, where
a knownmonotonic transformation t(·)maps the data support to the real line where stan-
dard kernel estimators are well-established, before back-transforming to the original data
support. See e.g. Silverman (1986) and Charpentier and Flachaire (2015).

Let Y = t(X) be a transformed random variable, with distribution FY and density fY .
The relationship between the transformed random variable Y and the original X at a non-
random point x is given by

fX(x) = |t′(x)|fY(t(x))

where t′ is the first derivative of t. Consider the transformed sample Y1, . . . ,Yn where Yi =
t(Xi), i = 1, . . . , n, and y = t(x). Since many upper tail data samples are also bounded,
e.g.X1, . . .Xn are supported on (u0,∞), a suitable transformationwould be t(x) = log(x −
u0). In the case for unbounded data, the logarithm transformation can still be used if we
set u0 < min{X1, . . . ,Xn}. As Y1, . . . ,Yn are supported on the real line, fY can then be
estimated by the standard kernel density estimator

f̂Y(y; h) = n−1
n∑
i=1

Kh(y − Yi)

where Kh(y) = h−1K(y/h) is a scaled kernel, h>0 is the bandwidth or smoothing param-
eter andK is a symmetric kernel density function. The estimator for fX can then be defined
by replacing the true density by its kernel estimator

f̂X(x; h) = |t′(t−1(y))|f̂Y(y; h).

Using the standard identity fX[u](x) = fX(x)/F̄X(u), our proposed estimator of the tail
density is

f̂X[u](x; h) = f̂X(x; h)/ ˆ̄FX(u; h)

where ˆ̄FX(u; h) = ∫ u
−∞ f̂X(x; h) dx can be numerically approximated.
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A generalisation of this transformation kernel estimator to multivariate data is estab-
lished through a d-dimensional random vectorX = (X1, . . . ,Xd)

� with distribution func-
tion FX and density function fX . The random variable of values greater than a vector
threshold u = (u1, . . . , ud)� is denoted as X[u] ≡ X|X > u under which each marginal
inequalitymust hold, i.e.Xj > uj for j = 1, . . . , d. The support ofX[u] is theCartesian prod-
uct (u,∞) = (u1,∞) × · · · × (ud,∞). For x ∈ (u,∞), the corresponding tail density is
fX[u](x) = fX(x)/F̄X(u) and tail distribution is FX[u](x) = FX(x)/F̄X(u), where F̄X(u) =∫
(u,∞)

fX(w)dw is the survival function of X evaluated at u.
Let X1, . . . ,Xn form a random sample drawn from the common d-variate distribu-

tion FX . Consider the transformed random variable Y = t(X) where t : (u0,∞) → R
d is

defined by t(x) = (t1(x1), . . . , td(xd))� where the tj are monotonic functions on (u0j,∞)

e.g. tj(xj) = log(xj − u0j), j = 1, . . . , d. The density of X is then related to the density of Y
by

fX[u](x) = fY(t(x))|Jt(x)|
where |Jt| is the Jacobian of t. Denoting the transformed data sample as Y1, . . . ,Yn,
with Y i = t(Xi), i = 1, . . . , n, the kernel estimator of fY at a non-random point y =
(y1, . . . , yd)� = t(x) is then given by

f̂Y(y;H) = n−1
n∑

i=1
KH(y − Y i)

whereK is a symmetric d-variate density function, the bandwidthmatrixH is a d × d pos-
itive definite symmetric matrix of smoothing parameters, and the scaled kernel KH(y) =
|H−1/2|K(H−1/2y). The tail density can then be defined by replacing the true density
function by its kernel estimator

f̂X(x;H) = |Jt(t−1(y))|f̂Y(y;H)

where t−1(y) = (t−1
1 (y1), . . . , t−1

d (yd))� is the element-wise inverse of t(y). Therefore

f̂X[u](x;H) = f̂X(x;H)/ ˆ̄FX(u;H) (1)

where ˆ̄FX(u;H) = ∫
(−∞,u)

f̂X(x;H) dx can be numerically approximated, for example by a
Riemann sum.

In this approach, the threshold u is only required to be specified in Equation (1). The
statistical properties of f̂X[u] are almost completely determined by those of f̂X which do not
rely on the choice of the threshold u. This is in contrast to an estimator of fX[u] based on
only the truncated sample {Xi : Xi > u}, as this is highly dependent on the choice (and
the estimation) of the threshold. Conveniently, for our proposed estimator, it is possible
to efficiently explore the tail behaviour for several thresholds, as the most onerous calcu-
lations are carried out to compute f̂X , and need not be repeated for each threshold choice.
Furthermore, with this decoupling of the density estimation from the threshold estima-
tion, this leaves the potential for the incorporation of more sophisticated estimators of u,
although this is beyond the scope of this paper.
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2.2. Tail density estimator performance

Under standard regularity conditions and using standard analysis techniques, Lemma A.1
in the Appendix demonstrates that the pointwise bias and variance of the kernel density
with unbounded data support f̂Y are given by

Bias{f̂Y(y;H)} = 1
2m2(K)tr(HD2fY(y)){1 + o(1)}

Var{f̂Y(y;H)} = n−1|H|−1/2fY(y)R(K){1 + o(1)},

where m2(K) = ∫
Rd y21K(y) dy, R(K) = ∫

Rd K(y)2 dy and D2fY is the Hessian matrix of
second order partial derivatives of fY with respect to y. The equivalent result for the trans-
formation kernel estimator f̂X is more difficult to establish, especially for a general transfor-
mation t, so we focus on the logarithm transformation, t(x) = (log(x1d), . . . , log(xd))�.

Theorem 2.1: Suppose that X is supported on (0,∞). Under the regularity conditions
(A1)–(A3) in the Appendix, the bias and variance of the logarithm transformation kernel
estimator f̂X at an estimation point x ∈ (0,∞) are

Bias{ f̂X(x;H)} = 1
2m2(K)

[
π(x)−1fX(x)tr(H Diag(x)) + 2π(x)−1tr(HxDfX(x)�Diag(x))

+tr(H Diag (x)Diag(DfX(x))) + tr(H Diag(x)D2fX(x)Diag(x))
] {1 + o(1)}

Var{ f̂X(x;H)} = n−1|H|−1/2R(K)π(x)−1fX(x){1 + o(1)},

where π(x) = ∏d
j=1 xj, Diag(x) is the d × d diagonal matrix with main diagonal given by x,

and DfX and D2fX are the gradient vector and Hessian matrix of fX with respect to x.

Proof: See Appendix. �

Without loss of generality, the above results forX supported on (0,∞)may be extended
to the general case for X supported on (u0,∞) following a suitable translation.

For d=1, the results under Theorem 2.1 reduce to

Bias{ f̂X(x; h)} = 1
2
m2(K)h2[fX(x) + 3xf ′X(x) + x2f ′′X (x)]{1 + o(1)}

Var{ f̂X(x; h)} = R(K)

nhx
fX(x){1 + o(1)},

which agreewith those inCharpentier andFlachaire (2015, Equations (14) and (17)). These
authors note that if fX(0), f ′X(0), f ′′X (0) are all finite, then the bias tends to 1

2m2(K)h2fX(0)
as x → 0. So if fX(0) 	= 0, then bias and variance problems may persist when approaching
the boundary. On the other hand, away from the boundary the bias and variance tend to 0
as x → ∞.

The multivariate expressions are not as straightforward to interpret in general, however
computing the d=2 case explicitly is instructive. WritingH = [h21, h12; h12, h

2
2] as a 2 × 2
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matrix, then

Bias{ f̂X(x;H)} = 1
2
m2(K)

[(
h21
x1

+ h22
x2

)
fX(x) + 2

(
h21x1
x2

∂fX(x)
∂x1

+ h22x2
x1

∂fX(x)
∂x2

)

+
(
h21x1

∂fX(x)
∂x1

+ h22x2
∂fX(x)
∂x2

)

+
(
h21(x

2
1 + x1x2)

∂2fX(x)
∂x21

+ h22(x1x2 + x22)
∂2fX(x)

∂x22

)]
{1 + o(1)}

Var{ f̂X(x;H)} = R(K)fX(x)
n(h21h

2
2 − h212)1/2x1x2

{1 + o(1)}.

The variance is a straightforward extension of the univariate expression. However this
is not the case for the bias: the coefficient for fX now involves (h21/x1 + h22/x2) and DfX
involves [h21x1/x2, h

2
2x2/x1] in addition to [h21x1, h

2
2x2], due to the action of the Jacobian

|Jt(x)| = π(x)−1. If fX(0),DfX(0),D2fX(0) are all finite then the bias tends to

1
2
m2(K)

[(
h21
x1

+ h22
x2

)
fX(0) +

(
h21x1
x2

∂fX(0)
∂x1

+ h22x2
x1

∂fX(0)
∂x2

)]

as x1, x2 → 0. Hence if fX(0) 	= 0, then the bias grows without bound; and likewise for the
variance. Away from the boundary, the MSE tends to 0 as x1, x2 → ∞. Furthermore, for
general d, for a fixed x in the tail region, then we have MSE{f̂X(x;H)} = O(n−1|H|−1/2 +
tr2(H)) as n → ∞.

Returning to our proposed tail density estimator, we have

f̂X[u](x;H) = f̂X(x;H)/ ˆ̄FX(u;H) = f̂X(x;H)/F̄X(u){1 + op(1)}

as ˆ̄FX(u) is pointwise MSE convergent to F̄X(u) – see Jin and Shao (1999).
Under the regularity conditions in Theorem 2.1, this implies that MSE{f̂X[u](x;H)} =
MSE{f̂X(x;H)}/F̄X(u)2{1 + o(1)}, so the properties of the tail density estimator f̂X[u] largely
carry over from the transformation kernel density estimator f̂X , with the important differ-
ence that f̂X[u] suffers much less from boundary problems than f̂X . This is because f̂X has
potentially undesirable behaviour near its boundary u, whereas we only require f̂X to be
calculated on (u0,∞), with u 
 u0. Note that u0 is fixed, and there is no true value to
estimate; see the simulation studies of Section 3 for an example.

An alternative for density estimation in heavy tails is to vary the amount of smoothing,
rather than to apply a stabilising transformation e.g. Loftsgaarden andQuesenberry (1965)
and Abramson (1982), though these estimators do not account for data boundedness.
To handle the boundedness of the data sample, another approach is based on modify-
ing the kernel function itself to avoid assigning probability mass outside the data support,
e.g. Gasser and Müller (1979) and Chen (1999). These techniques are focussed on bound-
ary behaviour and do not address the issue of spurious bumps in the tails which are far
away from this boundary. Our proposed logarithm transformation kernel estimator is able
to handle both of these issues simultaneously.
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2.3. Optimal bandwidth computation

The complicated form of the pointwise MSE{f̂X(x;H)} does not facilitate the computation
of a closed formmean integrated squared error, so it is not feasible to define an oracle band-
width for the transformation density estimator f̂X . Since the estimation is carried out in the
unbounded space of Y1, . . . ,Yn, then our strategy is to carry out the bandwidth selection
on these transformed data, as there is large body of data-based bandwidth selectors which
lead to consistent density estimates. The back-transformation to the original data scale
does not require any adjustment to this bandwidth to compute the transformation density
estimator, and subsequently to the tail density estimator.

From Lemma A.1 in the Appendix, the mean integrated squared error (MISE) of the
density estimator f̂Y is

MISE{f̂Y(·;H)} =
[
1
4m

2
2(K)(vec�H ⊗ vec�H)ψY ,4 + n−1|H|−1/2R(K)

]
{1 + o(1)},

where ψY ,4 = ∫
Rd D⊗4fY(y)fY(y) dy, as defined in Chacón and Duong (2010), and vec

is the vectorisation operator which stacks the columns of matrix into a single column.
Using this MISE expression, we can then define an oracle optimal bandwidth choice as
the minimiser of the MISE

H∗ = argmin
H∈F

MISE{f̂Y(·;H)} = O(n−2/(d+4)) (2)

where F is the space of d × d symmetric positive definite matrices. Furthermore, util-
ising this optimal bandwidth in f̂Y , the minimal MISE is infH∈F MISE{f̂Y(·;H)} =
O(n−4/(d+4)). With this bandwidth matrix order, for a non-random point x in the tail
region, the minimal MSE for the tail density estimator is infH∈F MSE{f̂X[u](x;H)} =
O(n−4/(d+4)) also, as n → ∞.

The optimal bandwidth selector defined in Equation (2) is mathematically intractable
as it depends on unknown quantities. Accordingly a vast body of research in the density
estimation literature has focussed on providing data-based bandwidth selectors which esti-
mate or approximate the optimal bandwidth. There are three main classes: (i) normal scale
(or rule of thumb), (ii) plug-in and (iii) cross validation.

The class of normal scale selectors is an extension to the multivariate case of the quick
and simple bandwidth selectors where the unknown density f is replaced by a normal
density, leading to

ĤNS =
[

4
(d + 2)n

]2/(d+4)
Sn−2/(d+4)

where S is the sample covariance matrix of Y1, . . . ,Yn (see e.g. Wand and Jones 1995,
p. 111).

The class of plug-in selectors consists of a generalisation of the work of Sheather and
Jones (1991) for univariate data byWand and Jones (1994) andDuong andHazelton (2003)
for multivariate data. Plug-in selectors use as a starting point the AMISE formula (Asymp-
totic MISE) where the only unknown quantity is the ψY ,4 functional. The fourth order
differential D⊗4 is expressed as a vector of length d4, resulting from a four-fold Kronecker
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product of the first order differential D. Replacing this by an estimator ψ̂Y ,4 yields the
plug-in criterion

PI(H) = 1
4m

2
2(K)(vec�H ⊗ vec�H)ψ̂Y ,4(G) + n−1R(K)|H|−1/2

where m2(K) is defined in Section 2.2, vec is the operator that stacks the element of a
matrix column-wise into a vector, ψ̂Y ,4(G) = n−2 ∑n

i,j=1 D⊗4LG(Y i − Y j), LG is an initial
pilot kernel with pilot bandwidthmatrixG and R(K) = ∫

Rd K(x)2 dx. The plug-in selector
ĤPI is the minimiser over F of PI(H).

For the class of cross validation selectors we focus on unbiased (or least squares) cross
validation and smoothed cross validation. Unbiased cross validation (UCV) was intro-
duced by Bowman, Hall, and Titterington (1984) and Rudemo (1982) for the univariate
case. The unbiased cross validation selector, ĤUCV for themultivariate case (Sain, Baggerly,
and Scott 1994), is defined as the minimiser over F of

UCV(H) =
∫

Rd
f̂Y(y;H)2 dx − 2n−1

n∑
i=1

f̂Y ,−i(Y i;H),

where f̂Y ,−i(Y i;H) = [n(n − 1)]−1 ∑n
j=1 KH(Y i − Y j). The smoothed cross validation

(SCV) selector ĤSCV, is defined as the minimiser over F of

SCV(H) = n−2
n∑

i=1

n∑
j=1

(KH ∗ KH ∗ LG ∗ LG − 2KH ∗ LG ∗ LG + LG ∗ LG)(Y i − Y j)

+ n−1R(K)|H|−1/2,

where ∗ is the convolution operator, as introduced by Hall, Marron, and Park (1992) for
univariate data, and by Sain et al. (1994) for multivariate data. If there are no replications
in the data, then SCV with G = 0 is identical to UCV as the pilot kernel L0 can then be
thought of as the Dirac delta function.

The UCV selector can be directly computed as it contains no unknown quantities, how-
ever specification of the bandwidthG of the pilot kernel is required for the plug-in and SCV
selectors. Computational data-based algorithms which address this are found inWand and
Jones (1995) and Duong and Hazelton (2003) for plug-in selectors and Hall et al. (1992)
and Duong and Hazelton (2005) for SCV selectors.

2.4. Tail density estimation via histograms

Histograms, especially for univariate data, are widely used as alternatives to kernel esti-
mators for visualising data samples, even when focussing on distributional tails (see e.g.
Perkins, Pitman, Holbrook, and McAneney 2007; Perkins et al. 2013). Their advantages
include computational and mathematical simplicity, and that they do not suffer from the
boundary bias problems of standard kernel estimators. In the context of tail density esti-
mation, we divide the data range of the sample X1, . . . ,Xn into a regular partition of
hypercubes Ai of size b1 × · · · × bd, and define the binwidth as b = (b1, . . . , bd)� ∈ R

d.
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The histogram estimator f̃X at a point x in a bin Ai is

f̃X(x; b) = γi

nb1 · · · bd
where γi represents the number of observations in the hypercube Ai. The histogram
estimator of the tail density f̃X[u] is

f̃X[u](x; b) = f̃X(x; b)/ ˜̄FX(u; b)

where ˜̄FX(u; b) counts the number of observations in the hypercubes covered
by (u,∞), divided by nb1 · · · bd. If conditions similar to (A1) and (A3) in the
Appendix are fulfilled then, by Scott (2015, Theorem 3.5), the MISE of the his-
togram estimator is MISE{f̃X[u](·; b)} = O((nb1 · · · bd)−1 + b�b) with minimal MISE
infb>0 MISE{f̃X[u](·; b)} = O(n−2/(d+2)). This is asymptotically slower than the
O(n−4/(d+4)) minimal MSE rate for the kernel estimator f̂X[u](x) for x not in the bound-
ary region. Hence, from the mean squared error perspective, the kernel density estimator
is preferable to a histogram for density estimation in the tail region, especially as the
dimension d increases.

Analogous with the data-based optimal bandwidth selectors, the normal scale optimal
binwidth (Scott 2015, Theorem 3.5) is

b̂j = 2 × 31/(d+2)πd/(d+4)sjn−1/(d+2) (3)

where sj, j = 1, . . . , d are the marginal sample standard deviations of X[u]
1 , . . . ,X[u]

n . There
is no equivalent variety of binwidth selectors which generalise Equation (3) compared to
bandwidth selectors (Section 2.3) due the slower asymptotic performance of histograms as
compared to kernel estimators.

2.5. Model assessment via tail density estimation

Tail density estimation can provide one way to assess the fidelity of the observed dataset
to one or more candidate models. For example, in climate science different climate models
commonly produce competing predictions of environmental variables. The performance
of these models is often validated by comparing the model predicted output, with that of
the observed data (Flato et al. 2013). These comparisons may be based on the full body of
the predicted variables, or focus primarily on the extremes (e.g. Perkins et al. 2007, 2013).
Similarly, in the context of extreme value theory, the analyst is regularly required to deter-
mine which of multiple competing parametric families, such as max-stable distributions,
provides the best fit to an observed extremal dataset (e.g. Coles and Tawn 1994).

Suppose that we have a suite of parametric models indexed byM = {1, . . . ,M}, and we
wish to determine which of them most appropriately describe the tails of the underlying
distribution of the observed dataset, fX . Perkins et al. (2013) utilised the histogram estima-
tor f̃X[u] of the observed data sample as a surrogate for the unknown target fX[u] , and so the
fit of the parametric models was assessed according to the discrepancy of the parametric
(tail) density functions g1, . . . , gM defined over (u,∞) and the histogram f̃X[u] . Their tail
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index (generalised here to d dimensions) is given by

T̃1(gj) =
∫

(u,∞)

|gj(x) − f̃X[u](x; b)| dx,

with the preferred models being those which give the smaller or smallest discrepancy

argmin
j∈M

T̃1(gj).

Note that the subscript of T̃1 indicates the L1 errormeasure used in its definition.We prefer
to use the L2 error to assess a model fit:

T̃2(gj) =
∫

(u,∞)

[gj(x) − f̃X[u](x; b)]2 dx. (4)

An improvement to this procedure is to replace the histogram in Equation (4) with the
transformation kernel estimator f̂X[u] :

T̂2(gj) =
∫

(u,∞)

[gj(x) − f̂X[u](x;H)]2 dx. (5)

This will accordingly allow the usual artefacts of histogram estimators to be avoided or at
least reduced. These include the anchor point problem (i.e. how to specify the locations
of the histogram bins) and the empty bin problem (where it is unclear whether histogram
bins with empty counts should be interpreted as a true zero probability or are due to insuf-
ficient observed data). This latter case is important for upper tail values as they are sparsely
distributed in the tail regions.

In the following section, we highlight the purpose of working with transformed density
estimators, by directly contrasting T̃2(gj) and T̂2(gj) with the index based on the standard
kernel density estimator

T̂∗
2 (gj) =

∫
(u,∞)

[gj(x) − f̂ ∗X[u](x;H)]2 dx, (6)

where f̂ ∗
X[u](x) represents the standard kernel density estimator constructed without apply-

ing the transformation t. As presented in the Introduction, in the univariate case, under
the Pickands-Balkema-de Haan theorem, the observations above some high threshold u
can be approximated by the GPD distribution. We thus define by f̌X[u] the GPD tail den-
sity estimator constructed from the observations above the threshold u and respective tail
index using the L2 error by

Ť2(gj) =
∫

(u,∞)

[gj(x) − f̌X[u](x)]2 dx. (7)

The integrals in Equations (4)–(7) can be approximated by (weighted) Reimann sums.
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3. Numerical studies

3.1. Simulated data - univariate

We now numerically examine the performance of the kernel density estimator introduced
in Section 2.1 for estimating upper tails, and demonstrate that it is a good surrogate for
the true tail distribution. We additionally evaluate the estimator’s performance through
the model assessment procedure of Section 2.5. Gaussian kernels are adopted throughout
given the usual secondary level of importance given to kernel choice in standard ker-
nel methods (see e.g. Table 2.1 of Wand and Jones 1995 where the difference between
the most efficient (Epanechnikov) kernel and the least efficient (uniform) kernel is less
than 7%).

To examine a range of tail behaviours we generate a dataset of size n=2,000 from each
of the Gumbel, Fréchet and generalised Pareto (GPD) target distributions, and set the
threshold u at the 95% upper sample quantile. For each sample, we compute:

(1) The appropriate maximum-likelihood based, parametric estimator: Fréchet (FRE),
Gumbel (GUM) or generalised Pareto (GPD);

(2) The maximum likelihood estimator of the generalised Pareto distribution, f̌X[u] , using
only the observations above the threshold u (GPD+);

(3) The histogram estimator f̃X[u] with normal scale optimal binwidth (HIS);
(4) The transformation kernel based estimator f̂X[u] with transformation t(x) = log(x −

u0), where u0 = min(X1, . . . ,Xn) − 0.05 range(X1, . . . ,Xn) using the normal scale
(KNS), plug-in (KPI), unbiased cross validation (KUC) and smoothed cross validation
(KSC) optimal bandwidth selectors;

(5) The standard kernel based estimators f̂ ∗X[u] , using the normal scale (KNS∗), plug-in
(KPI∗), unbiased cross validation (KUC∗) and smoothed cross validation (KSC∗)
optimal bandwidth selectors.

The top row of Figure 1 illustrates the various tail density estimates for the three target
distributions, with the true density shown as a solid black line. Displayed are the gener-
alised Pareto estimator f̌X[u] (GPD+; grey long-dashed), the histogram estimator f̃X[u] (HIS;
green dotted line), and the transformed f̂X[u] (KPI; red dashed) and standard f̂ ∗X[u] (KPI∗;
blue dot-dashed) kernel density estimates, both with plug in estimators only for clarity.
Visually, the transformed kernel estimators appear to be the more accurate nonparametric
estimators of tail behaviour in each case, being noticeably smoother and less noisy. That
the kernel density estimators are naturally continuous functions also leads to better visu-
alisations than histogram based estimators, and they are more helpful when comparing to
a continuous target density.

Both the transformed kernel and the GPD (using the largest observations only) estima-
tors appear to provide comparable fit in each case.

The bottom row of Figure 1 examines the extremal performance of the same estimators
through qq-plots of the target quantiles versus the GPD+ and nonparametric estimated
quantiles, for target quantiles ranging from 95% to 99.9%. Of all nonparametric estimators,
the histogram estimator most consistently approximates the true quantiles. This perfor-
mance compared to the kernel-based estimators is not unexpected, however, as the latter
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Figure 1. Generalised Pareto estimator f̌X [u] (GPD+; grey long-dashed) andnonparametric estimators of
the univariate tail density (top) and of the tail quantiles (bottom)when the target density is Fréchet (left),
Gumbel (centre) and generalised Pareto (right). Sample size is n= 2000. Fréchet (μ = 1, σ = 0.5, ξ =
0.25), Gumbel (μ = 1.5, σ = 3) and Pareto (μ = 0, σ = 1, ξ = 0.25) target densities are represented
by a solid black line. The histogram estimator f̃X [u] with normal scale binwidth (HIS) is represented by a
dotted green line, the transformed kernel plug-in estimator f̂X [u] (KPI) by a short dashed red line and the
standard kernel estimator f̂∗

X [u]
(KPI*) by a dot-dash blue line.

aim to optimally estimate the density function rather than the quantile function. Com-
paring the two kernel-based estimators, the transformed kernel estimator tends to either
outperform (centre, right panels) or perform as well as (left panel) the standard estimator,
which can be attributed to the standard estimator’s natural boundary bias. The tail quan-
tiles obtained from the transformed kernel estimators appear to perform better than those
of the generalised Pareto estimator (GPD+) when the target density is Fréchet, and they
are comparable for the Gumbel target. Unsurprisingly, the GPD+ estimator performs the
strongest when the data are in fact GPD distributed.

Note that the transformed kernel estimator has produced estimates with lighter tails
than the true density. For large n this is possibly due to the choice of a Gaussian kernel Kh
to construct the density estimates, so that the upper tail of this estimate (mapped through
the inverse transform t−1) is light compared to the true Fréchet and Pareto tails. For smaller
n, finite sample variation can produce a density estimate with either lighter or heavier tails
in the body of the data (see Supplementary Information).
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Figure 2. Box-plots of the log L2 errors for the parametric Fréchet (FRE), Gumbel (GUM), generalised
Pareto (GPD), and histogram (HIS) tail density estimators as well as the generalised Pareto f̌X [u] (GPD+).
Transformed kernel density estimators f̂X [u] use the plug-in (KPI), unbiased cross validation (KUC),
smoothed cross validation (KSC) and normal scale kernel (KNS) optimal bandwidth selectors. Standard
kernel density estimators f̂∗

X [u]
are indicatedby an asterisk (*). True target densities are (left panel) Fréchet,

(centre) Gumbel and (right) GPD. Box plots are based on 400 replicates of n= 2,000 observations.

For more quantitative results we repeat this process over 400 replicates for different
dataset sizes n=500,1000 and 2000, producing tail samples of size m=25,50 and 100,
with the threshold u set at the 95% upper quantile. As these three sample sizes gave similar
results, we only present those for n=2000 here for brevity. See the Supplementary Infor-
mation for results with n=500,1000. We take a numerical approximation (Reimann sum)
of the L2 loss (T̃2, T̂2, T̂∗

2 and Ť2(gj)).
Figure 2 presents box-plots of the accuracy of each tail density estimator for each true tail

distribution. As expected, for each target distribution the most accurate density estimator
is the correctly specified parametricmodel. The transformed kernel density estimators sys-
tematically perform better than their standard kernel counterparts, although they can be
more variable. The standard kernel estimators and the histogram estimator compete for the
worst estimate of the tail density, depending on the true target distribution. The differences
in the accuracy between kernel estimators with different bandwidth selectors is small, in
contrast to studies where the bandwidth selection class is a crucial factor (see e.g. Sheather
and Jones 1991; Wand and Jones 1995, Chapter 3), indicating that it is the difference
between estimators that is dominating performance. Using the normal scale bandwidth
selector (KNS) provides a greater accuracy compared to other bandwidth selectors when
the target distribution is GPD, and this is also slightly evident for Fréchet distributed data.
The best transformed kernel and the GPD tail density estimators (KNS andGPD+) appear
to perform equally well when the target distribution is Fréchet or Gumbel, with a slight
advantage to the KNS estimator in the case of Gumbel distributed data. Clearly the GPD+
estimator is over-performing when the target is GPD.

Finally, we examine the density estimator performance in terms of its ability to correctly
select the true, data-generating model (Section 2.5). For each of the 3 × 400 datasets gen-
erated previously, we compute the tail indices of the L2 loss (T̃2, T̂2, T̂∗

2 and Ť2(gj)) with
respect to each parametric model.
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Table 1. Proportion of 400 simulated datasets fromeach known target distribution (Fréchet, Gumbel
and GPD) that are correctly identified as coming from each of these distributions by having the small-
est tail index value. Bold text indicates the highest proportion for each target model. Nonparametric
density estimators are the histogram (T̃2), the transformed kernel (T̂2) and the standard kernel (T̂∗

2 ).
The parametric GPD estimator on tail data is Ť2. Tail indices are calculated according to the L2 loss.

Target T̃2 T̂2 T̂∗
2 Ť2

FRE 0.74 0.89 0.80 0.92
GUM 1.00 1.00 0.00 1.00
GPD 0.19 0.98 0.00 0.95

Table 1 displays the proportion of times that samples from a given true distribution are
identified as coming from either Fréchet, Gumbel or GPD distributions (i.e. by having the
smallest tail index value), as a function of tail density estimator. In each case, the highest
proportion of replicates selecting the correct model is given in bold. As the Gumbel distri-
bution (ξ = 0) is on the limiting border of the parameter space of the Fréchet distribution
(ξ > 0), to avoid possiblemodelmisidentification, we additionally perform a deviance test.
If the Gumbel provides a significantly better fit than the Fréchet distribution, meaning that
the shape parameter is not significantly different from zero, then we only consider Gumbel
and GPD distributions as candidate models.

As might be expected, for any target distribution in Table 1, using the transformation
based estimator (T̂2) as a surrogate for the target density generally selects the correct tar-
get in the vast majority of cases, with proportions substantially higher than those achieved
through the standard kernel and histogram tail indices, T̂∗

2 and T̃2. Both the transformation
and GPD based estimators (T̂2 and Ť2) have comparable abilities in correctly identifying
the underlying distribution with proportions around 0.90 and higher. When the true den-
sity is Fréchet, the best performing estimator determined by the L2 error measure favours
Ť2 while it favours T̂2 when the target is GPD. When this study is repeated with smaller
sample sizes (n=1,000 and 500), the superiority of the transformation-based tail index
compared to the GPD-based tail index is clearer (see Tables A & B in the Supplementary
Information). Overall, the transformation kernel-based index T̂2 performs as strongly as,
and in some cases better than the GPD-based index Ť2 and consistently better than the
nonparametric-based indices T̂∗

2 and T̃2.

3.2. Simulated data -multivariate

The analysis of multivariate upper tail values is considerablymore challenging than its uni-
variate counterpart. Within extreme value theory, a powerful motivation for exploratory
data analysis using kernel-based estimation is that no single parametric family exists
for max-stable distributions. See e.g. Kotz and Nadarajah (2000), Coles (2001), Beirlant,
Goegebeur, Teugels, and Segers (2004), de Haan and Ferreira (2006), Falk, Hüsler, and
Reiss (2011) and Beranger and Padoan (2015) for theoretical details and applications.
Although a multivariate extension of the GPD distribution is available (see for example,
Rootzén and Tajvidi 2006; Rootzén, Segers, and Wadsworth 2017) we do not consider it
here, as its principles are based on at least one marginal component exceeding some high
threshold rather than considering all components to be above a threshold, which is our
focus here.
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Figure 3. Nonparametric estimators of the bivariate tail density when the target density is bilogistic
(BIL), asymmetric negative logisitic (ANL) and Hüsler-Reiss (HR). Sample size is n= 4000. Bilogistic (α =
0.8, β = 0.52), asymmetric negative logistic (dependence parameter = 1.3, asymmetry parameter =
(0.2, 0.7)) and Hüsler-Reiss (dependence parameter = 2.4) target quantiles are represented by a solid
black line. [Top panels] The histogram estimator f̃X[u] with a normal scale bin width (HIS) is represented
by a longdashedgreen line, [bottompanels] the transformation kernel estimator f̂X[u] with plug-in band-
width estimator (KPI) by the short dashed red line and the standard kernel estimator f̂∗X[u] with plug-in
bandwidth estimator (KPI*) by the dot-dashed blue line.

We now numerically examine the performance of the bivariate transformation-based
density estimator for a range of upper tail behavours.We generate datasets of size n=4,000
from the asymmetric negative logistic (ANL; Joe 1990), the bilogistic (BIL; Smith, Tawn,
and Yuen 1990) and the Hüsler-Reiss (HR; Hüsler and Reiss 1989) distributions. The
threshold u is determined as each dataset’s marginal 90% upper quantiles.

For each dataset we compute the appropriate maximum likelihood based parametric
estimator (assuming simultaneously estimated generalised extreme value distributionmar-
gins), a 2-dimensional histogram with normal scale optimal bandwidth (HIS) and the
transformation and standard kernel estimators with plug-in optimal bandwidth selectors
(respectively KPI and KPI*) and transformation t(x) = (log(x1 − u01), log(x2 − u02))�,
where u0j = min{X1j, . . . ,Xnj} − 0.05 range{X1j, . . . ,Xnj}, j=1,2. The results from the
other bandwidth selectors are not displayed both for clarity, and due to the limited impact
of the bandwidth selector method on the performance of the density estimator.

Figure 3 illustrates the 25%, 50%, 75% and 99% highest density level sets of the his-
togram (long dashed green line, top panels), transformed kernel density estimates (dashed
red line, bottom panels) and standard kernel density estimates (dot-dashed blue line,
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Figure 4. Box-plots of the log L2 errors for the bivariate bilogistic (BIL), asymmetric negative logistic
(ANL) and Hüsler-Reiss (HR) parametric estimators, the 2-dimensional histogram (HIS), and the bivariate
transformation (KPI) and standard (KPI∗) kernel estimator with plug-in optimal bandwidth selector. True
target densities are (left) the bivariate biologistic, (centre) the asymmetric negative logistic and (right)
the Hüsler-Reiss models. Box plots are based on 400 replicates of n= 4,000 observations.

bottom panels) in comparison with the target distribution (solid black line). Visually, the
transformed kernel estimator performs extremely well – it is able to identify and describe
most of the features of the target densities as its contours follow the target contours very
closely. In contrast, the blocky, discrete nature of the histogram estimator makes it difficult
to discern the nature of the underlying target, and the standard kernel estimator is clearly
unable to capture the features of the tail density as accurately as the transformation kernel
estimator, displaying many spurious bumps in the tail.

Similarly to Figure 2, Figure 4 report the log L2 performance of the parametric (BIL,
ANL, HR), histogram (HIS), and transformation and standard kernel (KPI and KPI*) tail
density estimators in approximating the known target distribution, based on 400 replicate
simulations, for each of the target distributions considered in Figure 3. As for the uni-
variate case, the correctly specified parametric estimator of each distribution generates the
smallest error. The transformation kernel density estimator produces the next most effi-
cient estimator, with the bivariate histogram and the bivariate standard kernel performing
the most poorly in each case.

Finally, we examine the ability of the density estimator to correctly select the true data
generating model. Similarly to Table 1, Table 2 show the proportion of times that each
model was selected based on the bivariate histogram (T̃2), transformation kernel (T̂2) and
standard kernel T̂∗

2 based tail indices using data generated from a knownmodel, where the
parametric fitted models gj(x) are each of BIL, ANL and HR. The bold figures indicate the
estimator most often correctly selecting each target model.

In contrast to the univariate analyses, the bivariate results are mixed. The standard ker-
nel based index appears to be able to choose the correct model slightly more consistently
than the histogram based index. However, while the transformation density estimator
outperforms the standard kernel based index for Hüsler-Reiss distributed data, it under-
performs in other circumstances, particularly for ANL data. In general it seems that the
best performing estimator for model selection is dataset dependent.

A more detailed examination of these results reveals that the transformation-based
estimator is clearly the best performer in terms of its ability to estimate the true density
precisely. Table 3 presents the mean L2 error when fitting each model to data generated
under each of the BIL, ANL and HR models, taken over 400 replicate datasets. For any
true model and fitted model (i.e. any row in Table 3), the transformation kernel density
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Table 2. Proportion of 400 simulated datasets from each known
target distribution (BIL bilogistic, ANL asymmetric negative logis-
tic, and HR Hüsler-Reiss) that are identified as coming from each
of these distributions by having the smallest tail index value, as
a function of nonparametric density estimator. Bold text indicates
the highest proportion for each target model. Nonparametric den-
sity estimators are the bivariate histogram (T̃2), the transformed
kernel (T̂2) and the standard kernel (T̂∗

2 ).

Target T̃2 T̂2 T̂∗
2

BIL 0.69 0.62 0.74
ANL 0.83 0.15 0.85
HR 0.89 0.99 0.81

Table 3. Mean L2 errors of the nonparametric estimators for 400 simulated datasets from each known
true target distribution (BIL bilogistic, ANL asymmetric negative logistic, andHRHüsler-Reiss), compared
to each parametric fitted model. Nonparametric density estimators are the bivariate histogram (T̃2), the
transformed kernel (T̂2) and the standard kernel (T̂∗

2 ). Bold text highlights theminimum L2 error for each
estimator, indicating the fitted model most often selected.

True Model Fitted Model T̃2 T̂2 T̂∗
2

BIL 0.024 0.002 0.007
BIL ANL 0.026 0.003 0.009

HR 0.030 0.004 0.012
BIL 0.045 0.002 0.015

ANL ANL 0.040 0.004 0.011
HR 0.060 0.012 0.030
BIL 0.021 0.007 0.008

HR ANL 0.022 0.007 0.009
HR 0.019 0.003 0.006

estimate provides the most accurate density estimate (on average). This echoes the high
performance findings for our density estimator in Figure 4.

For a given true model, and for a specified density estimator, the bold figure indicates
the fittedmodel that is chosenmost often (on average) in terms of minimising the L2 error.
Thus for e.g. BIL data, the BIL model is likely to be selected most often, regardless of the
choice of density estimator. (Note that as these are mean values, there is some overlap of
the distribution of L2 errors within each density estimator, which ultimately produces the
proportions observed in Table 2.) This is also the case, on average for HR data tending to
choose the HR model most often for each estimator. However, for ANL data, the trans-
formation density estimator T̂2 will select the BIL model most often (resulting in the low
0.15 correct classification rate in Table 2), even though it is by far the better estimator of
the ANL density (with a mean L2 score of 0.004, compared to 0.040 and 0.011), simply
because this estimator is also a slightly closer match to the fitted BIL model in this case. In
general this suggests that while the transformation based kernel density estimator clearly
outperforms both the standard kernel and histogram based density estimators in terms of
the quality of the tail density estimation, care should be taken when using these estimators
in a model selection scenario, particularly for models in more than one dimension.
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4. Exploratory data analysis of climatemodels

Perkins et al. (2007, 2013) previously used univariate histogram density estimators for both
visualisation and model selection to evaluate the ability of global climate models (GCMs)
to simulate extreme temperatures (minima andmaxima) over Australia. Themodels which
they considered are the climatemodels assessed by the Intergovernmental Panel onClimate
Change (IPCC) Fourth Assessment Report (AR4) to investigate changes in temperature
extremes. A well-known challenge for these models is to be able to accurately project
extreme temperatures (Perkins et al. 2007, 2013; Fischer, Beyerle, and Knutti 2013; Sill-
mann, Kharin, Zhang, Zwiers, and Bronaugh 2013; Sillmann, Kharin, Zwiers, Zhang, and
Bronaugh 2013; Cowan, Purich, Perkins, Pezza, Boschat, and Sadler 2014).

Following earlier work, Perkins et al. (2013) developed a univariate tail index (see
Section 2.5, Equation (4)) which evaluates the amount of overlap between a model-
predicted distributional tail, gi, and the distribution of the observed extreme data. This
index reflects the discrepancy between two distributional tails, whereby a model perfectly
fitting the observed data has zero score, and increasing scores imply an increasing lack-
of-fit of the model to the observed data. Unlike for the simulated parametric models in
Section 3.1 and 3.2, there is no closed form for the density function gi, i = 1, . . . ,M, to
characterise the data values generated by the climate models. Perkins et al. (2013) replaced
the unknown target density gi with a histogram g̃i, based on model generated data, when
comparing to the histogram of the observed data f̃X[u] in Equation (4), i.e. they used the
index T̃1(g̃i) to determine the most appropriate model. Because of this difference with the
model selection analysis in Sections 3.1 and 3.2, there is reason to believe that this proce-
dure ismore reliable inmodel selection terms, as the comparison is between twodata-based
tail density estimators, and it is accordingly likely that the better the density estimator, the
more credible the comparison between the two datasets will be.

We extend this previous histogram estimator-based analysis by considering a wider and
moremodern ensemble of global climate models than those in Perkins et al. (2013), as well
as exploring alternatives to T̃1(g̃i) as the model selection criterion. Here we useM=22 cli-
mate models participating in theWorld Climate Research Programme’s 5th phase Coupled
Model Intercomparison Project (CMIP5; see Flato et al. 2013), which currently underpin
global and regional climate projections of extremes (e.g. Sillmann et al. 2013). The choice
of models was based on the availability of daily maximum andminimum temperature data
for the historical experiment (∼1860–2005; see Taylor, Stouffer, and Meehl 2012). Other
targeted temperature extreme evaluation studies on the CMIP5 ensemble have found gen-
erally well-simulated changes in observed trends of specific indices (e.g. Flato et al. 2013;
Sillmann et al. 2013). However unlike this study, no consideration has been given to the
full underlying distribution of tail values.

The observed data sample are the daily observed maximum temperatures for Sydney,
Australia, from 01/01/1911 to 31/12/2005 yielding a sample of n=34,699 observations.
Observations were obtained from the Australian Water Availability Project dataset (Jones,
Wang, and Fawcett 2009), a gridded product covering all of Australia. All AR4 climate
models were run to generate data in this same time frame, and the GCM grid box in
which Sydney is located was extracted. The threshold determining the extreme maximum
temperatures is the 95% upper quantile u = 30.98◦C. Additionally, note that the climate
models are physical, not statistical, and run their own climate. Hence when run for long



20 B. BÉRANGER ET AL.

Table 4. Univariate histogram- T̃2(g̃i), kernel- T̂2(ĝi) and GPD-based Ť2(ǧi) tail
index scores, based on histogram g̃i , kernel ĝi and GPD ǧi density estimators, for
the moderately extreme maximum temperatures produced by the twenty-two
AR4 climate models. The models displayed are the ten best performing models
in one dimension. Bold figures indicate the four best performing models under
each model selection index.

Model selection index

Model T̃2(g̃) T̂2(ĝ) Ť2(ǧ)

CanESM2 0.0042 0.0006 0.0015
CMCC-CESM 0.0055 0.0039 0.0009
CMCC-CM 0.0053 0.0031 0.0011
CNRM-CMS 0.0033 0.0005 0.0003
HadGEM2-CC 0.0060 0.0036 0.0004
HadGEM2-ES 0.0039 0.0018 0.0002
MIROC5 0.0037 0.0009 0.0020
MPI-ESM-LR 0.0029 0.0003 0.001
MPI-ESM-MR 0.0018 0.0002 0.0005
MPI-ESM-P 0.0063 0.0030 0.0063

enough their properties of non stationarity are very clear. Furthermore, they are forced via
anthropogenic climate emissions, which induce a highly non stationary climate.

Table 4 displays the modified Perkins et al. (2013) histogram-based tail indices, T̃2(g̃i),
the transformation kernel density estimator based index, T̂2(ĝi) and the GPD based tail
index Ť2(ǧi) for ten out of the 22 models. Note that T̂2(ĝi) implements the transformation
kernel estimator for both the observed data (f̂X[u] ) and theGCMgenerated data (within T̂2).
The bold figures indicate the four best performingmodels (out of 22) for each tail index. In
this one-dimensional analysis, both histogram- and transformation kernel density-based
estimators strongly identify the same two models (i.e. with lowest tail index): MPI-ESM-
LR and MPI-ESM-MR, as best describing the observed univariate extremes. All three tail
indices share models MPI-ESM-MR and CNRM-CMS in their top four best models to
simulate moderate extremes. The three tail indices also have eight models in common out
of their top ten.

Figure 5 illustrates both the tail density estimators and qq-plots for the common top per-
forming models across all tail indices. The histogram-, kernel- and GPD-based estimates
are represented by the solid, dashed and dotted lines respectively, whereas the observed and
GCM data are denoted by black and grey lines. For both models (CNRM-CMS and MPI-
ESM-LR), each of the three density estimates of the simulated data closely follow their
respective density estimator of the observed data. The quality of the density estimates is
also evident in the qq-plots. Here the smoother transformation kernel density estimator
(dashed lines) is able to find a better match between observed and GCMmodel data than
the histogram (solid lines) for both models, with MPI-ESM-MR providing a better overall
fit (in particular for large quantiles). The quality of the fit provided by the transformation
kernel and GPD density estimators appears to be very similar.

For a bivariate analysis, we consider the upper tail of pairs of maximum and minimum
temperatures over the same time period, in order to investigate which of the climate mod-
els can best predict joint upper tail behaviour. (The largest minimum temperatures are
important in understanding the duration and severity of heatwaves.) The threshold for the
maximum temperatures are the 90% marginal upper quantiles u = (28.77◦C, 18.07◦C)�.
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Figure 5. Histogram (f̃X [u] ), transformation kernel (f̂X [u] ) and GPD (f̌X [u] ) based estimators of the tail den-
sities for two of the best AR4 models: (left to right) CNRM-CMS and MPI-ESM-MR. Histogram estimators
(HIS) are denoted by solid lines, kernel plug-in estimators (KPI) by dashed lines and GPD estimators
(GPD+) by dotted lines. Observed data (obs) is illustrated in black and GCM data (model) in grey.

Table 5. Bivariate histogram- T̃2(g̃i) and transformation kernel-based
T̂2(ĝi) tail index scores, based on histogram g̃i and kernel ĝi density
estimators, for the extreme (minimum, maximum) temperatures pro-
duced by the twenty-two AR4 climate models. The models displayed
are the ten best performing models. Bold figures indicate the four best
performing models under each model selection index.

Model selection index

Model T̃2(g̃) T̂2(ĝ)

CMCC.CM 0.0149 0.0092
CNRM-CMS 0.0076 0.0039
HadCM3 0.0123 0.0066
HadGEM2.ES 0.0133 0.0081
IPSL-CM5A-LR 0.0123 0.0060
IPSL-CM5B-LR 0.0079 0.0041
MIROC5 0.0124 0.0070
MPI-ESM-LR 0.0096 0.0048
MPI-ESM-MR 0.0106 0.0059
MPI-ESM-P 0.0083 0.0040

Table 5 presents the same information as Table 4 but for the bivariate data (without the
GPD-based tail index).

Here, both model selection indices selecting the same best four models CNRMS-CMS,
IPSL-CM5B-LR, MPI-ESM-LR and MPI-ESM-P. Two of these were already identified in
Table 4 for their ability to simulate univariate temperature upper tail behaviour in compar-
ison with the observed data. In particular, the CNRM-CMS model is clearly identified by
both indices, achieving the lowest tail index scores, and has, along with the MPI-ESM-P
model, the best ability to simulate bivariate upper tail temperatures.

Figure 6 illustrates the bivariate tail density estimators for the CNRM-CMS and MPI-
ESM-P models, two of the top-performing bivariate models. Similarly to Figure 5, his-
tograms are shown by solid lines, and transformation kernel density estimators by dashed
lines. Observed and GCM data are represented by black and grey lines respectively. It is
immediately apparent that the kernel-based density estimates are visually much cleaner,



22 B. BÉRANGER ET AL.

Figure 6. Histogram (left panel) and kernel estimators (right panel) of the tail densities for the CNRM-
CMS and MPI-ESM-P climate models. Histograms estimators (HIS) are denoted by solid lines and kernel
plug-in estimators (KPI) by dashed lines. Observed data (obs) is illustrated with black lines and climate
model data (model) by grey lines. Kernel estimator contours indicate the 25%, 50% and 75% highest
density level sets.

and easier to evaluate than their histogram counterparts. In particular, it is immediate that
the CNRM-CMS model is a visually better match to the observed data than MPI-ESM-P.

The top performing CNRM-CMS model appears to simulate the bivariate temperature
upper joint tail quite well, although the second best performing MPI-ESM-P model visu-
ally performsmuchmore poorly. This indicates twopossibilities. That the kernel estimators
need to be further refined at the boundary or, perhapsmore likely, that physical parameters
in the GCMs need to be revised for a more realistic simulation of minimum tempera-
ture extremes. While minimum temperatures are physically simpler for a climate model
to simulate than maximum temperature (Perkins et al. 2007), the mis-representation of
the observed temperature distribution is a well-known issue for GCMs, which is at least in
part explained by their coarse resolution (Seneviratne et al. 2012). For example, dynam-
ically downscaled regional climate models that are run at finer resolutions for a limited
spatial domain can offer some improvement in the simulation of extreme temperatures (e.g.
Seneviratne et al. 2012; Vautard et al. 2013; Perkins, Moise, Whetton, and Katzfey 2014).

The goal of this exploratory data analysis is to propose feasible geophysical models
which adequately describe the observed temperature data maxima and minima. As these
geophysical models are expressed as a set of differential equations, their overall statisti-
cal properties are not well-known. Our estimates and visualisations of the tail densities
of these geophysical models are a first step in elucidating their statistical properties, upon
which more sophisticated data analysis can be subsequently applied.

5. Discussion

Nonparametric density estimation is a useful exploratory data analysis tool for the analysis
of the tail behaviour of an observed process. In this article we have introduced a nonpara-
metric kernel estimator for the analysis of the tail density of univariate and multivariate
data by applying a logarithm transformation to account for the heavy tails and bounded-
ness of distributional tail samples. Our proposed tail density estimator does not suffer from
the usual boundary problems associated with kernel estimators. It is also robust in terms
of the choice of the high threshold value u.
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Our theoretical results (centred on Theorem 2.1) indicate the good performance of this
transformation kernel density estimator in the upper tails. Numerical illustrations of its
performance were given in Sections 3 and 4. This tail density estimator provides visually
useful representations of upper tail sample behaviour compared to, say, histogram estima-
tors – consider the contrast in visual clarity between the histogram and kernel estimators
illustrated in Figure 6. Furthermore, it can reliably be incorporated into existing diagnostic
and performance measures, such as the tail index of Perkins et al. (2013).

There is, of course, scope for further development and analysis of these ideas. As our
proposed tail density estimator is decoupled from the threshold estimation, a promising
avenue for amelioration would be the inclusion of more sophisticated threshold estimators
than the simple quantile thresholds we have utilised.

Throughout we have constructed our kernel density estimates based on Gaussian ker-
nels. In general, this means that the tail behaviour of the kernel-based density estimators is
necessarily the tail behaviour of the kernel K mapped through the inverse of the transfor-
mation t. This implies that if the tail behaviour of the sample does not correspond to that
of the transformed kernel, then the kernel density estimate will poorly represent the true
behaviour of the observed data distribution far beyond the range of the observed data. A
natural approach to resolving this problem could be to adapt the form ofK and t to directly
correspond to the (estimated) tail behaviour of the observed sample.

Additional improvements could be obtained by incorporating a local polynomial adjust-
ment (e.g. Geenens 2014) to the boundary to improve over the transformation kernel
approach, although here our primary interest is in the behaviour of the upper tail. Sim-
ilarly, while the logarithm transformation is widely used due it conveniently mapping a
semi-infinite interval to the real line, alternative transformations could be considered.
Possibilities include the shifted power family of Wand et al. (1991)

t(x) =
{

(x + λ1)
λ2 sign(λ2) λ2 	= 0

log(x + λ2) λ2 = 0

where the log-transformation fixes λ1 = 0, λ2 = −u0, and so other values may lead to bet-
ter estimation, and the richer family of transformations proposed by Wand et al. (1991)
and those posited by Geenens (2014).

Finally, the performance of this transformation-based kernel density estimator is lim-
ited by the performance of standard kernel density estimator methods. In particular, its
performance will decline as the dimension of the random vector X increases. While this is
unavoidable, if one wishes to perform kernel density estimation in this setting, it is impor-
tant that it is implemented as efficiently as possible. The results presented in this article
provide one step towards achieving this.
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Appendix. Proofs

The below assumptions will be used to establish the optimality properties of our transforma-
tion kernel density estimators. These assumptions are usually expressed for random variables with
unbounded support, which in our case is the transformed variable Y = t(X). This set of conditions
do not form a minimal set, but they serve as a convenient starting point to state our results.

(A1) The d-variate density fY is continuous, square integrable and ultimately monotone for all
element-wise partial second derivatives.

(A2) The d-variate kernel K is a positive, symmetric, square integrable p.d.f. such that∫
Rd yy�K(y) dy = m2(K)Id wherem2(K) is finite and Id is the d × d identity matrix.

(A3) The bandwidth matrix H = H(n) forms a sequence of symmetric and positive definite
matrices such that n−1|H|−1/2 and every element ofH approaches zero as n → ∞.

The proof of Theorem A.1 requires Lemma A.1 (below) which establishes the minimal rate of
MISE convergence of f̂Y . This result has already been established (e.g. Wand 1992), however we
include details of a proof using an alternative notation for fourth order derivatives of a multivariate
function via four-fold Kronecker product, which is simpler to code than tensors.

LemmaA.1: Suppose that the conditions (A1–A3) hold. The MISE of the the kernel density estimator
with unbounded data support f̂Y is

MISE{f̂Y(·;H)} =
[
1
4m

2
2(K)(vec�H ⊗ vec�H)ψY ,4 + n−1|H|−1/2R(K)

]
{1 + o(1)}.

where ψY ,4 = ∫
Rd D⊗4fY(y)fY(y) dy.
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Proof of Lemma A.1.: The expected value of f̂Y is

Ef̂Y(y;H) = EKH(y − Y) =
∫

Rd
KH(y − w)f

(
y
)
dw = KH ∗ fY (x)

where ∗ denotes the convolution operator between two functions. Asymptotically, using a Taylor
series expansion, we have

Ef̂Y(y;H) =
∫

Rd
|H|−1/2K(H−1/2(y − w))fY(y) dw

=
∫

Rd
K(w)fY(y − H1/2w) dw

=
∫

Rd
K(w)

[
fY(y) − w�H1/2DfY(x)

+ 1
2
w�H1/2D2fY(y)H1/2w

]
{1 + o(1)} dw

=
[
fY(y) + 1

2

∫
Rd

K(w)tr(ww�HD2fY(y)) dw
]

{1 + o(1)}

=
[
fY(y) + 1

2
m2(K)tr(HD2fY(y))

]
{1 + o(1)}.

This allows us to write the bias of f̂Y(y;H) as

Ef̂Y(y;H) − fY(y) = 1
2m2(K)tr(HD2fY(y)){1 + o(1)}.

For the variance, we haveVarf̂ (y;H) = n−1
E[KH(y − Y)2] − n−1[EKH(y − Y)]2. The second term

is given by the above, so we are required to evaluate

Ef̂ (y;H)2 = E[KH(y − Y)2] =
∫

Rd
KH(y − w)2fY (w) dw

=
∫

Rd
|H|−1K(H−1/2(y − w))2fY (w) dw

=
∫

Rd
|H|−1/2K(w)2fY(y − H−1/2w) dw

= |H|−1/2fY(y)
∫

Rd
K(w)2 dw{1 + o(1)}

= |H|−1/2fY(y)R(K){1 + o(1)}.

Thus the variance term is

Var{f̂Y(y;H)} = n−1{|H|−1/2fY(y)R(K) − [fY(y) + 1
2m2(K)tr(HD2fY(y))]2}{1 + o(1)}.

Since H → 0 then |H|−1/2 dominates both the constant term fY(y) and the tr(H) term so we can
write

Var{f̂Y(y;H)} = n−1|H|−1/2fY(y)R(K){1 + o(1)}.
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The integrated square bias (ISB) is then

ISB{f̂Y(·;H)} =
∫

Rd
Bias2 f̂Y(y;H) dy =

∫
Rd

1
4
m2

2(K)tr2(HD2fY(y)) dy{1 + o(1)}

= 1
4
m2

2(K)

∫
Rd

tr2(HD2fY(y)) dy{1 + o(1)}

= 1
4
m2

2(K)(vec�H ⊗ vec�H)ψY ,4{1 + o(1)},
and similarly the integrated variance (IV) is

IV{f̂Y(·;H)} =
∫

Rd
n−1|H|−1/2fY(y)R(K) dy{1 + o(1)}

= n−1|H|−1/2R(K)

∫
Rd

fY(y) dy{1 + o(1)}

= n−1|H|−1/2R(K){1 + o(1)},
using the integrability assumptions in conditions (A1) and (A2). Hence we obtain the result as
MISE{f̂Y(·;H)} = ISB{f̂Y(·;H)} + IV{f̂Y(·;H)}. �

Proof of Theorem 2.1.: Let y = t(x) = (log(x1d), . . . , log(xd))�, and inversely x =
exp(y) = (exp(y1), . . . , exp(yd))�. The Jacobian is |Jt(x)| = 1/(x1 · · · xd) = exp(−|y|)where |y| =
y1 + · · · + yd. Thus fY(y) = 1/|Jt(x)|fX(x) = exp(|y|)fX(exp(y)). This representation will allow us
to determine theHessianmatrix ofD2fY since it the previous lemma shows that it is a crucial element
in MISE{f̂Y(·;H)}.

To evaluate derivatives of fY(y) with respect to y, we require the following preliminary differen-
tials:

d exp(|y|) = D[exp(y1 + · · · + yd)]�dy = [exp(y1), . . . , exp(yd)]�dy = exp(y)�dy,

d exp(y)=[d exp(y1), . . . , d exp(yd)] = [exp(y1)dy1, . . . , exp(yd)dyd] = Diag(exp(y))dy,

and

dDiag(exp(y)) = Diag(d exp(y1), . . . , d exp(yd) = Diag(exp(y1)dy1, . . . , exp(yd)dyd)

= Diag(exp(y))Diag(dy).

where Diag(a) is the diagonal matrix whose elements are a. It can be decomposed as Diag(a) =∑d
j=1 e

�
j aeje

�
j in terms of ej, the jth elementary d-vector which is all zero except for 1 at the jth

element. So then

d vec(Diag(exp(y))) =
d∑

j=1
vec(Diag(exp(y))eje�j )e�j dy.

The differential of fY is

dfY(y) = (d exp(|y|))fX(exp(y)) + exp(|y|)dfX(exp(y))

= fX(exp(y))exp(y)�dy + exp(|y|)DfX(exp(y))�dexp(y)

= fX(exp(y))exp(y)�dy + exp(|y|)DfX(exp(y))�Diag(exp(y))dy

which implies that the first derivative is

DfY(y) = fX(exp(y))exp(y) + exp(|y|)Diag(exp(y))DX(exp(y))

= fX(exp(y))exp(y) + exp(|y|)[DfX(exp(y))� ⊗ Id]vec(Diag(exp(y))),
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using the first identification table in Magnus and Neudecker (1999, p. 176) to convert these dif-
ferentials to derivatives. The second form of DfY(y) derives from the identity vec(ABC) = (C� ⊗
Id)vecB for conformable matrices A,B,C.

The differential of DfY(y) is

dDfY(y) = fX(exp(y))dexp(y) + (dfX(exp(y)))exp(y)

+ (d exp(|y|))Diag(exp(y))DfX(exp(y))

+ exp(|y|)[DfX(exp(y))� ⊗ Id]dvecDiag(exp(y))

+ exp(|y|)[(dexp(y))�D2fX(exp(y)) ⊗ Id]vecDiag(exp(y))

= fX(exp(y))Diag(exp(y))dy + exp(y)DfX(exp(y))�Diag(exp(y))dy

+ Diag(exp(y))DfX(exp(y))exp(y)�dy

+ exp(|y|)[DfX(exp(y))� ⊗ Id]

⎧⎨
⎩

d∑
j=1

vec[Diag(exp(y))eje�j ]e
�
j dy

⎫⎬
⎭

+ exp(|y|)[dy�Diag(exp(y))D2fX(exp(y)) ⊗ Id]vecDiag(exp(y)).

This can be simplified by noting that for d-vectors a, b,

d∑
j=1

(a� ⊗ Id)vec[Diag(b)eje�j ]e
�
j =

d∑
j=1

Diag(b)eje�j ae
�
j = Diag(b)Diag(a)

that is,

dDfY(y) = {fX(exp(y))Diag(exp(y)) + exp(y)DfX(exp(y))�Diag(exp(y))

+ Diag(exp(y))DfX(exp(y))exp(y)�dy

+ exp(|y|)Diag(exp(y))Diag(DfX(exp(y)))

+ exp(|y|)Diag(exp(y))D2fX(exp(y))Diag(exp(y))}dy.
This implies that the Hessian matrix of DfY(y) is

D2fY(y) = fX(x)Diag(x) + xDfX(x)�Diag(x) + Diag(x)DfX(x)x�

+ π(x)Diag(x)Diag(DfX(x)) + π(x)Diag(x)D2fX(x)Diag(x) (A1)

as exp(|y|) = |Jt(x)|−1 = x1x2 · · · xd = π(x).
Firstly using the definition of f̂X , its expected value is Ef̂X(x;H) = |Jt(x)|Ef̂Y(y;H) and its

associated bias, from combining Lemma A.1 and Equation (A1), is

Bias{f̂X(x;H)}
= Ef̂X(x;H) − fX(x) = |Jt(x)|Bias{f̂Y(t(x);H)}
= 1

2m2(K)π(x)−1tr(HD2fY(y)){1 + o(1)}
= 1

2m2(K)π(x)−1tr{H[fX(x)Diag(x) + xDfX(x)�Diag(x) + Diag(x)DfX(x)x�

+ π(x)Diag(x)Diag(DfX(x)) + π(x)Diag(x)D2fX(x)Diag(x)]}{1 + o(1)}
= 1

2m2(K)[π(x)−1fX(x)tr(HDiag(x)) + 2π(x)−1tr(HxDfX(x)�Diag(x))

+ tr(HDiag(x)Diag(DfX(x))) + tr(HDiag(x)D2fX(x)Diag(x))]{1 + o(1)}.



JOURNAL OF NONPARAMETRIC STATISTICS 31

Similarly we have E[f̂X(x;H)2] = |Jt(x)|2E[f̂Y(t(x);H)2], leading to

Var{f̂X(x;H)} = E[f̂X(x;H)2] − {Ef̂X(x;H)}2 = |Jt(x)|2Var{f̂Y(t(x);H)}
= n−1|H|−1/2R(K)|Jt(x)|2fY(y){1 + o(1)}
= n−1|H|−1/2R(K)π(x)−1fX(x){1 + o(1)}.

�


