
Stat Comput (2015) 25:959–974
DOI 10.1007/s11222-014-9465-1

Efficient recursive algorithms for functionals based on higher
order derivatives of the multivariate Gaussian density

José E. Chacón · Tarn Duong

Received: 8 November 2013 / Accepted: 24 March 2014 / Published online: 13 April 2014
© Springer Science+Business Media New York 2014

Abstract Many developments in Mathematics involve the
computation of higher order derivatives of Gaussian den-
sity functions. The analysis of univariate Gaussian random
variables is a well-established field whereas the analysis of
their multivariate counterparts consists of a body of results
which are more dispersed. These latter results generally
fall into two main categories: theoretical expressions which
reveal the deep structure of the problem, or computational
algorithms which can mask the connections with closely
related problems. In this paper, we unify existing results and
develop new results in a framework which is both concep-
tually cogent and computationally efficient. We focus on the
underlying connections between higher order derivatives of
Gaussian density functions, the expected value of products
of quadratic forms in Gaussian random variables, and V -
statistics of degree two based on Gaussian density functions.
These three sets of results are combined into an analysis of
non-parametric data smoothers.

Electronic supplementary material The online version of this
article (doi:10.1007/s11222-014-9465-1) contains supplementary
material, which is available to authorized users.

J. E. Chacón (B)
Departamento de Matemáticas, Universidad de Extremadura,
06006 Badajoz, Spain
e-mail: jechacon@unex.es

T. Duong
Theoretical and Applied Statistics Laboratory (LSTA),
Sorbonne Universities, University Pierre and Marie Curie
(UPMC) – Paris 6, UR 1, 75005 Paris, France
e-mail: tarn.duong@upmc.fr

T. Duong
Pitié-Salpêtrière Hospital, Institute of Translational Neurosciences
(IHU-A-ICM), Assistance Publique-Hôpitaux de Paris (AP-HP),
75005 Paris, France

Keywords Hermite polynomial · Derivative · Kernel
estimator · Normal density · Quadratic forms · Symmetrizer
matrix · V -statistics

Mathematics Subject Classification 15A24 · 65F30 ·
62E10 · 62G05 · 62H05

1 Introduction

Gaussian random variables and their associated probability
density functions are commonly studied in Statistics since
they possess many attractive theoretical and computational
properties. In fact, Gaussian functions and its derivatives
appear as fundamental tools in many areas of Mathematics,
and also in other disciplines like Physics or Engineering.

Many results have been established for univariate Gaus-
sian random variables in a unified framework. For multivari-
ate random variables, many results are available as well, but
due to the lack of a commonly accepted notation for higher
order derivatives of themultivariate functions, these aremore
scattered.

In this paper we adopt the vectorized form of higher
order multidimensional derivatives, which was the key tool
that allowed to obtain explicit formulas for the moments
of the multivariate normal distribution of arbitrary order
(Holmquist 1988) and for the higher order derivatives of the
multivariateGaussian density function, through the introduc-
tion of vector Hermite polynomials (Holmquist 1996a).

These polynomials, however, depend on a matrix (so-
called symmetrizer matrix) having an enormous number of
entries, even when the dimension and the derivative order
are not high. Thus, although these results provide a general
formulation that is valid and useful for developing theory in
any dimension and for an arbitrary derivative/moment order,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-014-9465-1&domain=pdf
http://dx.doi.org/10.1007/s11222-014-9465-1


960 Stat Comput (2015) 25:959–974

some authors like Triantafyllopoulos (2003) or Kan (2008)
pointed out the difficulties that the computation of such a
large matrix represents in practical situations.

Here we unify existing results, as well as developing
new ones, in a cogent framework which facilitates a con-
cise theoretical form as well as an efficient computational
form. We begin by introducing the vectorized form of the
higher order derivatives of the multivariate Gaussian den-
sity functions, via their factorization as Hermite polynomi-
als, in Sect. 2. Efficient recursive algorithms to compute
the involved high-dimensional symmetrizer matrix, and the
product of this matrix and a high-dimensional vector, are dis-
cussed in Sects. 3 and 4, respectively. A different approach
is developed in Sect. 5, by focusing on the recursive compu-
tation of the unique partial derivative operators that unequiv-
ocally determine the full derivative vector. We then focus
on some statistical applications intimately linked with the
derivatives of the multivariate Gaussian density function: the
computation ofmoments ofmultivariate normal distributions
and the expectation of powers of quadratic forms in Gaussian
random variables are explored in Sects. 6.1 and 6.2, respec-
tively, including a new result providing a formula for the
joint cumulants of quadratic forms in normal variables that
corrects an identity included in Mathai and Provost (1992).
In Sect. 6.3 we show how these functionals are extremely
useful for the analysis of non-parametric data smoothers,
which involve the computation of V -statistics of degree two
based on derivatives of multivariate Gaussian density func-
tions. Finally, in Sect. 7 all the newly introduced recursive
algorithms are compared to the standard, direct approach, in
terms of computation time.

2 Higher order derivatives of Gaussian density functions

The characterization of the r -th order derivatives of a d-
variate function can be expressed in many ways using, e.g.
matrices, tensors or iterated permutations.We use the charac-
terization using Kronecker products of vectors, popularized
by Holmquist (1996a). Let f be a real d-variate function,
x = (x1, . . . , xd), and D = ∂/∂x = (∂/∂x1, . . . , ∂/∂xd) be
the first derivative (gradient) operator. If the usual conven-
tion (∂/∂xi )(∂/∂x j ) = ∂2/(∂xi∂x j ) is taken into account,
then the r -th derivative of f is defined to be the vector
D⊗r f = (D f )⊗r = ∂r f/∂x⊗r ∈ R

dr , with D⊗0 f = f ,
D⊗1 f = D f . Here, D⊗r refers to the r -th Kronecker power
of the operator D, formally understood as the r -fold product
D ⊗ · · · ⊗ D.

For example, all the second order partial derivatives
can be organized into the usual Hessian matrix Hf =
(∂2 f/∂xi∂x j )di, j=1, and theHessian operator can be formally

written as H = DD�. The equivalent vectorized form is

D⊗2 = vecH, where vec denotes the operator which con-
catenates the columns of a matrix into a single vector, see
Henderson and Searle (1979).

For Hessian matrices, there is not much gain from using
this vectorized form since the matrix form is already widely
analyzed. However for r > 2, this vectorized characteri-
zation, which maintains all derivatives as vectors, has con-
tributed to recent advances in multivariate analysis which
have been long hindered by the lack of suitable analytical
tools. For example, Chacón and Duong (2010, 2011) and
Chacón et al. (2011) treated higher derivatives involved in
multivariate non-parametric data smoothing. These authors
relied heavily on the derivatives of theGaussian density func-
tion, as defined in terms of the Hermite polynomials.

Let φ(x) = (2π)−d/2 exp(− 1
2 x

�x) be the standard
d-dimensional Gaussian density and φ�(x) = |�|−1/2

φ(�−1/2x) be the centred Gaussian density with variance
�. Holmquist (1996a) showed that the r -th derivative of φ�

is

D⊗rφ�(x) = (−1)r (�−1)⊗rHr (x;�)φ�(x), (1)

where the r -th order Hermite polynomial is defined by

Hr (x;�)

= r !Sd,r

[r/2]∑

j=0

(−1) j

j !(r − 2 j)!2 j

{
x⊗(r−2 j) ⊗ (vec�)⊗ j}.

(2)

Here Sd,r is the dr × dr symmetrizer matrix defined as

Sd,r = 1

r !
d∑

i1,i2,...,ir=1

∑

σ∈Pr

r⊗

�=1

ei�e
T
iσ(�)

, (3)

withPr standing for the group of permutations of order r and
ei for the i th column of Id , the identity matrix of order d.
We also have thatSd,0 = 1 andSd,1 = Id . This definition is
highly abstract so we take a concrete example to demonstrate
the action of this symmetrizer matrix on a threefold product,
i.e. Sd,3(x1 ⊗ x2 ⊗ x3) = 1

6 [x1 ⊗ x2 ⊗ x3 + x1 ⊗ x3 ⊗
x2 + x2 ⊗ x1 ⊗ x3 + x2 ⊗ x3 ⊗ x1 + x3 ⊗ x1 ⊗ x2 + x3 ⊗
x2 ⊗ x1]. In general, the symmetrizer matrix Sd,r maps the
product

⊗r
i=1 xi to an equally weighted linear combination

of products of all possible permutations of x1, . . . , xr .
The goal of this paper is to investigate efficient ways to

compute the r -th derivative D⊗rφ�(x) of the multivariate
Gaussian density function, and their applications to several
statistical problems.

3 Recursive computation of the symmetrizer matrix

Surely the most prohibitive element in the computation of
the r -th derivative of the d-variate Gaussian density is the

123



Stat Comput (2015) 25:959–974 961

symmetrizer matrix Sd,r . It is a huge matrix, even for low
values of d and r (for instance, S4,8 is a matrix of order
65,536×65,536) and its definition involves r !dr summands,
hence its direct calculation can be onerous both in memory
storage and computational time.

Nevertheless, this symmetrizer matrix has independent
interest on its own from an algebraic point of view. This is
well certified by the fact that it has been independently dis-
covered many times. To our knowledge, Holmquist (1985)
was the first to develop its form as a generalization of Kro-
necker product permuting matrices. More recently, Schott
(2003) and Meijer (2005) found alternative derivations and
further interesting properties.

First, to reduce the number of loops in (3) it is use-
ful to consider the conversion to base d. Any number i ∈
{0, 1, . . . , dr − 1} can be written in base d as (ar · · · a2a1)d ,
with digits a j ∈ {0, 1, . . . , d − 1}, meaning that i =∑r

j=1 a jd j−1.A simple translation yields that the correspon-
dence between the set PRd,r = {

(i1, . . . , ir ) : i1, . . . , ir ∈
{1, . . . , d}} of permutations with repetition of d elements,
taken r at a time, and the set {1, 2, . . . , dr }, given by
p(i1, . . . , ir ) = 1 + ∑r

j=1(i j − 1)d j−1 is also bijective,
hence all r -tuples (i1, . . . , ir ) involved in the multi-index
for the first summation in (3) can be obtained as p−1(i) as
i ranges over {1, 2, . . . , dr } (see Appendix 1), so that only
two loops are needed for the direct computation of the sym-
metrizer matrix. Moreover, after a careful inspection of the
r -fold Kronecker product involved it follows that (3) can be
written as

Sd,r = 1

r !
dr∑

i=1

∑

σ∈Pr

Ei,(p◦σ◦p−1)(i), (4)

where Ei, j represents the dr × dr matrix having the (i, j)-th
element equal to 1 as its only nonzero element. The operator
p−1 maps an integer i to a unique r -tuple (i1, . . . , ir ), the
operator σ generates a permutation of a given r -tuple, and the
operator pmaps an r -tuple to an integer in {1, . . . , dr }. So the
composition (p◦σ ◦ p−1), as i ranges over {1, . . . , dr } and σ

overPr , generates an equivalent set to the set of permutations
defined in (3). Hence, the novel formulation in Eq. (4) ismore
appropriate for efficient computations.

Even in this simple form, the direct implementation of
Sd,r using (4) usually takes a considerable amount of time
as d and r increase, due to the large number of terms involved
in each of the two loops. A useful way to improve over the
direct approach is to use a recursive implementation of Sd,r .
Thus, the goal of this section is to express the symmetrizer
matrix Sd,r+1 in terms of the symmetrizer matrix of lower
order Sd,r .

Let us denote by Mm×n the set of all m × n matrices
and let Kr,s ∈ Mrs×rs be the commutation matrix of order
r, s; see Magnus and Neudecker (1979). The commutation

matrix allows us to commute the order of the matrices in a
Kronecker product, e.g., if A ∈ Mm×n and B ∈ Mp×q ,
then Kp,m(A⊗ B)Kn,q = B⊗A. The relationship between
Sd,r+1 and Sd,r is given in the next theorem.

Theorem 1 Consider the matrix Td,r ∈ Mdr×dr defined by

Td,r = 1

r

r∑

j=1

(Id j ⊗ Kdr− j−1,d)(Id j−1 ⊗ Kd,dr− j )

where, by convention, Kd−1,d = 1 ∈ R. Then Sd,r+1 =
(Sd,r ⊗ Id)Td,r+1.

From Theorem 1 it follows that, to obtain a recursive for-
mula for Sd,r , it suffices to obtain a recursive formula for
Td,r . This is provided in the next result.

Theorem 2 For any r ≥ 1 the relationship between Td,r+1

and Td,r is given by

(r + 1)Td,r+1 = (Idr−1 ⊗ Kd,d)(rTd,r ⊗ Id)(Idr−1 ⊗ Kd,d)

+ Idr−1 ⊗ Kd,d .

Combining Theorems 1 and 2, the proposed recursive
algorithm to compute Sd,r reads as follows:

Algorithm 1: Recursive symmetrizer matrix computa-
tion
Input : dimension d and order r
Output: Symmetrizer matrix Sd,r
1. If r = 0 set Sd,r = 1
2. If r = 1 set Sd,r = Id
3. If r ≥ 2 then set S = T = Id and A = Kd,d

For i in 2, . . . , r :
Set T = A(T ⊗ Id )A + A and S = (S ⊗ Id )T
If i < r , set A = Id ⊗ A

4. Return Sd,r = S/r !

The proofs of all the new results in the paper, including
Theorems 1 and 2, will be deferred to Appendix 1. Besides, a
detailed comparison of the computation times for the direct
approach [based on Eq. (4)] and the new recursive Algo-
rithm 1 is given below in Sect. 7.

4 Recursive computation of the product of the
symmetrizer matrix and a vector

Although the computation of symmetrizer matrices has an
algebraic interest on its own, recall from the Introduction
that the primary motivation for the name of the symmetrizer
matrix is its symmetrizing action on aKronecker product vec-
tor. Thus, for a vector v = (v1, . . . , vdr ), the product Sd,rv

deserves to be studied more closely. For example, when the

123



962 Stat Comput (2015) 25:959–974

final goal is to obtain the r -th order Hermite polynomial it
may not be strictly necessary to compute Sd,r explicitly. To
understand this notice that, from (4), the i-th coordinate of
the vector w = Sd,rv is just

wi = 1

r !
∑

σ∈Pr

v(p◦σ◦p−1)(i). (5)

This makes it feasible to obtain Sd,rv for higher values of d
and r , in situations where memory limitations do not allow
us to compute the whole matrix Sd,r .

The recursive approach to compute Sd,rv is based on the
following corollary of Theorem 1, in which we show that by
induction it is possible to obtain a new representation of the
symmetrizer matrix, a factorization with r factors depending
only on the Td,k matrices for k = 1, . . . , r .

Corollary 1 For any r = 1, 2, . . ., the symmetrizer matrix
can be factorized as

Sd,r =
r∏

k=1

(Td,k ⊗ Idr−k )

= (Td,1 ⊗ Idr−1)(Td,2 ⊗ Idr−2) · · · (Td,r−1 ⊗ Id)Td,r .

This factorization can be further simplified by noting that
Td,1 = Id .

Corollary 1 suggests a straightforward recursive scheme
provided a simple formula for each of the factors (Td,k ⊗
Idr−k )v is available. We derive such a formula in the next
result.

Corollary 2 Denote by τ jk the transposition that inter-
changes the j-th and k-th coordinates of an index vec-
tor (i1, . . . , ir ) with 1 ≤ i1, . . . , ir ≤ d. For any vector
v = (v1, . . . , vdr ) ∈ R

dr and k = 2, . . . , r , it is possi-
ble to express (Td,k ⊗ Idr−k )v = 1

k

∑k
j=1 w p◦τ jk◦p−1 , where

w p◦τ jk◦p−1 ∈ R
dr is the vector whose (p ◦ τ jk ◦ p−1)(i)-th

coordinate is vi .

From Corollary 2 it follows that, once the set PRd,r =
{p−1(i) : i = 1, . . . , dr } of permutations with repetitions
has been obtained (see Appendix 1), the vector Sd,rv can be
computed using just two nested loops with a small number of
iterations, namely for k = 2, . . . , r and j = 1, . . . , k. This
implementation is described in Algorithm 2. Again, we refer
to Sect. 7 for the comparison of the computation times of
the direct approach [based on Eq. (5)] and the new recursive
Algorithm 2.

5 Recursive computation of all the unique partial
derivatives of the multivariate Gaussian density

Employing the vectorizationD⊗r f to encompass all the r -th
order partial derivatives into a single vector is quite useful for

Algorithm 2: Recursive computation of Sd,rv

Input : dimension d, order r , a vector v ∈ R
dr

Output: The product w = Sd,rv

1. Set wold = v

2. If r ≥ 2 then

(a) Generate the set PRd,r as described in Appendix 1
(b) For k in 2, . . . , r :

Initialize wnew = 0 ∈ R
dr

For j in 1, . . . , k:
Add wold to the coordinates of wnew reordered
according to p ◦ τ jk ◦ p−1 (as indicated in
Corollary 2)

Set wold = wnew/k

3. Return wold

a neat theoretical analysis of quantities based on multivariate
higher-order derivatives. For instance, from the explicit for-
mula for D⊗rφ� given in terms of the multivariate Hermite
polynomials, involving Sd,r , Holmquist (1988) was able to
derive explicit expressions for the moments and cumulants
of arbitrary order of the multivariate normal distribution,
whereas all the previous studies only presented tailored for-
mulas for a few particular cases (see Sect. 6.1 below).

However, many of the partial derivative operators in the
vector D⊗r may appear duplicated, due to Schwarz’s theo-
rem on the commutation of higher-order partial derivatives.
Thus, it would be desirable in practice to avoid computing
these elements more than once. For example, when commu-
tation of partial derivatives of second order is allowed, it suf-
fices to compute the terms ∂2/∂x2i for i = 1, . . . , d, and just
∂2/(∂xi∂x j ) for i < j , to obtain the whole operator D⊗2. It
is not necessary to compute the mixed partial derivatives for
i > j . We will refer to this reduced set of partial derivatives,
that unequivocally determine the full derivative vector, as the
‘unique partial derivatives’. By this phrase, we mean the set
of partial derivatives with unique partial derivative indices.

This section makes use of this observation to introduce a
different approach, in which a further reduction in storage
space and computation time is achieved by computing only
the unique partial derivatives of D⊗rφ� and re-distributing
them later to form the full vector.

First, notice that each coordinate of the operator D⊗r can
be written as Di for some i ∈ PRd,r = {

(i1, . . . , ir ) : i1,
. . . , ir ∈ {1, . . . , d}}, where

Di = ∂r

∂xi1 · · · ∂xir
,

so that the index i j refers to the coordinate with respect to
which the j-th partial derivative is performed, for 1 ≤ j ≤ r .
As noted in Sect. 3, the application p gives a one-to-one
correspondence between PRd,r and {1, . . . , dr } so that it
induces a natural ordering i1 = p−1(1), . . . , idr = p−1(dr )

123



Stat Comput (2015) 25:959–974 963

in PRd,r (this correspondence is written down explicitly in
Appendix 1). It is not difficult to check that, in the formal
expression of D⊗r as a Kronecker power, its coordinates are
arranged precisely in that order, that is,

D⊗r = (Di1 , . . . ,Didr ).

Alternatively, when commutation of partial derivatives is
possible, the coordinates ofD⊗r can also bewritten asDm for
some m ∈ Id,r = {

(m1, . . . ,md) : 0 ≤ mk ≤ r, |m| = r
}
,

where |m| = ∑d
k=1 mk and

Dm = ∂ |m|

∂xm1
1 · · · ∂xmd

d

.

Therefore, here the index mk refers to the number of times
that it is partially differentiated with respect to xk , for 1 ≤
k ≤ d.

It is clear that for a given i ∈ PRd,r the two definitions
agree if mk is set to be the number of times that the k-th
coordinate appears in i ; that is, mk = ∑r

j=1 I{i j=k}. But
for a given m ∈ Id,r there might be many possible multi-
indices i ∈ PRd,r such that Dm = Di . This is because,
provided partial differentiation commutation is possible, the
set {Dm : m ∈ Id,r } contains the unique coordinates of D⊗r .

Moreover, it is not difficult to show (for instance, by induc-
tion on d) that the cardinality of Id,r is Nd,r = |Id,r | =(r+d−1

r

)
, which is usually much smaller than dr . So an effi-

cient way to obtain D⊗r is to compute its unique Nd,r ele-
ments {Dm : m ∈ Id,r } and then rearrange them to formD⊗r .

If all the unique partial derivatives {Dm : m ∈ Id,r } are
collected in a vector Dr of length Nd,r , there is also a
natural ordering according to which its coordinates should
be positioned. This ordering is induced by that of D⊗r =
(Di1, . . . ,Didr ) in a way such that any Dm can be asso-
ciated with the first value of j ∈ {1, . . . , dr } such that
Dm = Di j . For instance, the first element of Dr is neces-
sarily D(r,0,...,0) = D(1,1,...,1) = Di1 and the last element of
Dr is necessarily D(0,...,0,r) = D(d,d,...,d) = Didr .

For any m ∈ Id,r , Erdélyi (1953, Section 12.8) showed
that Dmφ�(x) can also be expressed with the aid of a real-
valuedHermite polynomialHm (remember that the bold font
notationHr is reserved for the vector-valued Hermite poly-
nomial introduced in (2)) in a way such that

Dmφ�(x) = (−1)|m|φ�(x)Hm(x;�).

So ifwe denote byHr (x;�) the vector of length Nd,r con-
taining as coordinates all the values {Hm(x;�) : m ∈ Id,r },
arranged in the same order as the elements of Drφ�(x),
it is possible to write Drφ�(x) = (−1)rφ�(x)Hr (x;�).
Thus, by comparison with the definition of Hr , notice that
the vector Hr (x;�) contains the unique coordinates of
(�−1)⊗rHr (x;�).

Savits (2006, Theorem 4.1) showed d recursive formulas
that are useful to obtain every coordinate ofHr+1(x;�) from
some of the elements inHr (x;�) andHr−1(x;�). Namely,
if V = �−1 = (vi j )

d
i, j=1 and z = Vx = (z1, . . . , zd) then,

for j = 1, 2, . . . , d, Savits (2006) showed that

Hm+e j (x;�) = z jHm(x;�) −
d∑

k=1

v jkmkHm−ek (x;�),

(6)

where we follow the convention that Hm−ek (x;�) = 1 if
mk = 0.

Here, an algorithm is proposed to obtain recursively
the whole Hermite polynomial vector of unique elements
Hr+1(x;�) fromHr (x;�) andHr−1(x;�), thusmaintain-
ing the analogy with the usual univariate recursive formula.
In this vector form, the recursion starts with H0(x;�) = 1
and H1(x;�) = �−1x.

An obvious difficulty is that Hermite polynomial vectors
of different orders have different lengths. Besides, if all the d
recursive formulas are applied to each element of Hr (x;�)

then dNd,r elements are obtained and dNd,r > Nd,r+1 if
r ≥ 1, so necessarily some of the obtained elements would
beduplicated. Furthermore, itwouldbedesirable, at each step
of the recursion, that the newly obtained Hermite polynomial
vector keep the correct order of its coordinates.

A recursive procedure to compute the Nd,r+1-dimensional
vector Hr+1(x;�) from the Nd,r -dimensional vector Hr

(x;�) and the Nd,r−1-dimensional vector Hr−1(x;�),
using the recursive formulas (6), reads as follows:

1. Using (6) with j = 1 it is possible to obtain all the Her-
mite polynomial values corresponding to {m + e1 : m ∈
Id,r } = {m ∈ Id,r+1 : m1 ≥ 1}. There are Nd,r of them,
which are put in the first Nd,r positions of Hr+1(x;�).
It remains to compute the Hermite values corresponding
to {m ∈ Id,r+1 : m1 = 0}, which can be expressed
as {(0,m2, . . . ,md) : m2 + · · · + md = r + 1}. There
are, therefore, Nd−1,r+1 of them, which is the remaining
number of coordinates of Hr+1(x;�) to fill in, since
Nd,r+1 = Nd,r + Nd−1,r+1, according to Pascal’s rule.

2. Using (6) with j = 2 it is possible to obtain all the Her-
mite polynomial values corresponding to {(0,m2, . . . ,

md) : m2 + · · · +md = r + 1,m2 ≥ 1}. Reasoning as in
thefirst step it is clear that there are Nd−1,r of them,which
are obtained by adding e2 to the multi-indices m ∈ Id,r

of the form m = (0,m2, . . . ,md). Since, inductively,
the first Nd,r−1 coordinates of the vector Hr (x;�) cor-
respond to multi-indices m ∈ Id,r with m1 ≥ 1, formula
(6) with j = 2 should be applied to the remaining last
Nd,r − Nd,r−1 = Nd−1,r coordinates of Hr (x;�) to
keep the same coherent ordering in the coordinates of
Hr+1(x;�).

123



964 Stat Comput (2015) 25:959–974

Moreover, since formula formula (6) with j = 2 is
applied to multi-indices m ∈ Id,r of the form m =
(0,m2, . . . ,md), it can be further simplified to take into
account that m1 = 0, yielding

Hm+e2(x;�)=z2Hm(x;�)−
d∑

k=2

v2kmkHm−ek (x;�).

It remains to compute the Hermite values corresponding
to {m ∈ Id,r+1 : m1 = m2 = 0}, which can be expressed
as {(0, 0,m3, . . . ,md) : m3 + · · · +md = r + 1}. There
are, therefore, Nd−2,r+1 of them, which is the remaining
number of coordinates of Hr+1(x;�) to fill in, because
Nd,r+1 = Nd,r + Nd−1,r + Nd−2,r+1, according to Pas-
cal’s rule.

3. After the (d − 1)-th step, the first
∑d−1

j=1 Nd− j+1,r coor-
dinates of Hr+1(x;�) have been computed, and since
Nd,r+1 = 1 + ∑d−1

j=1 Nd− j+1,r by successive applica-
tion of Pascal’s rule, the only coordinate left is the last
one, corresponding tom = (0, . . . , 0, r+1) ∈ Id,r+1. To
compute it we just apply the iterative formula with j = d
to the last element of Hr (x;�), which corresponds to
(0, . . . , 0, r) ∈ Id,r , which in this case simplifies to

H(0,...,0,r+1)(x;�) = zdH(0,...,0,r)(x;�)

−vddrH(0,...,0,r−1)(x;�).

The previous steps have been merged into Algorithm 3 to
derive a novel recursive procedure to compute D⊗rφ�(x).

Algorithm 3: Recursive computation of D⊗rφ�(x)

Input : vector x ∈ R
d , d × d matrix �, order r

Output: The vector D⊗rφ�(x) ∈ R
dr

1. Set H0(x; �) = 1 and H1(x; �) = �−1x
2. If r ≥ 2 then, for k in 2, . . . , r :

Proceed as in steps 1–3 in the text to obtain Hk(x; �)

from Hk−1(x; �) and Hk−2(x; �)

3. Distribute the elements of Hr (x; �) to form (�−1)⊗rHr (x; �)

4. Return D⊗rφ�(x) = (−1)r (�−1)⊗rHr (x; �)φ�(x)

A natural competitor of this algorithm, also in recursive
form, but based on the computation of the whole Hermite
vector polynomial and not only its unique coordinates, can be
derived from Theorem 7.2 in Holmquist (1996a). From this
theorem, it follows that the vectors uk = (�−1)⊗kHk(x;�)

satisfy the recurrence relation

uk = Sd,k
[
(�−1x) ⊗ uk−1−(k−1)

{
(vec�−1) ⊗ uk−2

}]
.

(7)

Therefore, a straightforward recursive implementation of the
previous formula, making use of Algorithm 2 to calculate

(7), allows us to obtain D⊗rφ�(x) = (−1)rurφ�(x). The
performance of these two recursive algorithms as well as the
direct alternative is investigated in Sect. 7 below.

6 Applications to selected statistical problems

The multivariate Gaussian density function plays a key role
inmany statistical problems.A number of themneed not only
the function itself, but some of its higher-order derivatives.
In this section, we illustrate how the previous methods can be
used to deal with some selected situations; the performance
of the many possible algorithms arising from the application
of the previous recursive techniques to eachof these problems
is discussed in Sect. 7.

6.1 Moments of Gaussian random variables

Perhaps themost widely studied Gaussian-based scalar func-
tions are the moments of the multivariate normal distrib-
ution and the expected values of quadratic forms in nor-
mal random variables. Many algorithms have been pro-
posed to compute these, which are too numerous to cite all
here. Surely the earliest is Isserlis (1918), but more recent
attempts includes Kumar (1973), Magnus (1979), Ghazal
(1996),Holmquist (1988, 1996b), Triantafyllopoulos (2003),
Kan (2008) and Phillips (2010). As noted before, the advan-
tage of the approach of Holmquist (1988, 1996b) is that it
produces concise explicit expressions using the symmetrizer
matrix, with its corresponding computational disadvantage.
The other references tend to focus on more efficient algorith-
mic approaches where the underlying structure is obscured,
making them less amenable for further mathematical analy-
sis. To this end, we wish to derive algorithms which are both
computationally efficient and mathematically tractable.

For X ∼ Nd(μ,�) a d-variate Gaussian random variable
with mean μ and variance �, its raw vector moment of order
r is defined as μr = E(X⊗r ) ∈ R

dr . Holmquist (1988)
showed that an explicit formula for this vector moment for
an arbitrary order r is given by

μr = r !Sd,r

[r/2]∑

j=0

1

j !(r − 2 j)!2 j

{
μ⊗(r−2 j) ⊗ (vec�)⊗ j}.

(8)

Further, Holmquist (1996a, Equation (9.2)) noted that the
resemblance between the previous expression and the def-
inition of the multivariate Hermite polynomial (2) can be
expressed as

μr = Hr (μ;−�). (9)

Although the matrix � in the definition of the vector Her-
mite polynomial needs to be positive definite so that all

123



Stat Comput (2015) 25:959–974 965

the formulas have a well-defined probabilistic interpretation,
Holmquist (1996a) showed that (9) remains valid even if−�

is negative definite. Therefore, the vector moment μr can be
efficiently computed using the algorithms introduced in the
previous sections.

Many authors, as for instance Triantafyllopoulos (2003),
Kan (2008) or Phillips (2010), focus instead on real-valued
moments μi = E(Xi1 · · · Xir ), where X = (X1, . . . , Xd)

and i = (i1, . . . , ir ) ∈ PRd,r . The vector moment μr con-
tains all these real-valued moments as its coordinates (some
of them even duplicated), but the main objection that these
authors make about this vector moment formulation is about
the difficulties encountered at the time of computing the sym-
metrizer matrix involved in (8), so they propose different
alternatives to compute a single one of these real-valued
moments. The approach described above overcomes these
difficulties and allows to readily obtain all the real-valued
moments at once by computing the whole vector moment.

6.2 Quadratic forms in Gaussian random variables

A closely related problem is that of computing the mixed
moment of orders (r, s) of two quadratic forms in normal
variables, defined as

νr,s(A,B) ≡ νr,s(A,B;μ,�) = E[(X�AX)r (X�BX)s],
where A,B are both d × d symmetric matrices and X ∼
Nd(μ,�). Note that by taking s = 0 and B = Id (say), the
previous functional reduces to the r -th moment of a single
quadratic form in normal variables, which will be denoted as
νr (A) ≡ νr (A;μ,�) = E[(X�AX)r ].

The connection between these functionals and the vector
moments of the multivariate normal distribution was high-
lighted by Holmquist (1996b), who noted that

νr,s(A,B) = [(vec� A)⊗r ⊗ (vec� B)⊗s]μ2r+2s (10)

and, consequently, νr (A) = (vec� A)⊗rμ2r . This Kronecker
product form has the advantage of decoupling the determin-
istic matrix product (vecA)⊗r from the raw moment μ2r of
the random vectorX. Moreover, Eq. (10) makes it immediate
to obtain a general formula for νr,s(A,B) for arbitrary orders
(r, s) from (8), as shown in Theorems 2 and 8 of Holmquist
(1996b), and, besides, it makes the advantage of using vector
moments (as opposite to real-valued moments) more appar-
ent. Furthermore, it also suggests a straightforward way to
apply the efficient procedures for the computation of μ2r+2s
in Sect. 6.1 to obtain νr,s(A,B).

However, even if Eq. (10) relates the two types ofmoments
in a simple way, these two moments are quite different
in nature. Whereas μ2r+2s is a high-dimensional vector,
νr,s(A,B) is a scalar, so in this case it might be preferable
to use an alternative recursive implementation not relying on
the computation of such a high-dimensional vector.

The classical alternative approach is based on recursive
relation between cumulants and lower order ν functionals.
Recall that when the cumulant generating function ψ(t) =
logE[exp{tY }] of a real random variable Y is r -times differ-
entiable, its r -th cumulant is defined as ψ(r)(0) for r ≥ 1.
Mathai and Provost (1992, Theorem 3.2b.2) asserted that for
r ≥ 1,

νr (A) =
r−1∑

i=0

(
r − 1

i

)
κr−i (A)νi (A)

where κr (A) is the r -th cumulant of the random variable
X�AX, given by

κr (A) ≡ κr (A;μ,�)

= 2r−1(r − 1)![ tr{(A�)r } + rμ�(A�)r−1Aμ
]
.

The recursion starts with ν0(A) = 1.
For the mixed moment νr,s(A,B), Smith (1995, Equation

(10)) showed that

νr,s(A,B) =
r∑

i=0

s−1∑

j=0

(
r

i

)(
s − 1

j

)
κr−i,s− j (A,B)νi, j (A,B)

(11)

where κr,s(A,B) is the joint (r, s)-th cumulant ofX�AX and
X�BX, which is defined as the value at (0, 0) of the (r, s)-
th order partial derivative of the joint cumulant generating
function ψ(t1, t2) = logE[exp{t1X�AX + t2X�BX}] for
r + s ≥ 1.

Mathai and Provost (1992, Theorem 3.3.4 and Corollary
3.3.1) provided a concise formula for κr,s(A,B) without an
explicit proof. Unfortunately, although their formula is cor-
rect for some particular cases, it is wrong in general (see
further details in Appendix 1 below). We provide the correct
formula for the cumulant κr,s(A,B) in Theorem 3 below.

Let us denote by MPr,s the set of permutations of the
multiset having r copies of 1 and s copies of 2; that is,

MPr,s

= {i = (i1, . . . , ir+s) ∈ {1, 2}r+s : n1(i)= r, n2(i)= s
}
,

where n�(i) denotes the number of times that � appears in
i , for � = 1, 2; i.e., n�(i) = ∑r+s

k=1 I{ik=�}. Recall that the
cardinality of MPr,s is (r + s)!/(r !s!).
Theorem 3 For r + s ≥ 1, the joint cumulant of order (r, s)
of X�AX and X�BX is given by

κr,s(A,B) = 2r+s−1r !s!
∑

i∈MPr,s

tr
[
Fi1 · · ·Fir+s

{
Id/(r + s)

+ �−1μμ�}],

where F1 = A� and F2 = B�.

123



966 Stat Comput (2015) 25:959–974

The combination of the correct formula for κr,s(A,B)with
(11) results in a straightforward recursive algorithm for the
computation of νr,s(A,B), whose performance is reported in
Sect. 7.

Upon visual inspection, these ν functionals are composed
of various traces of products of A,B and �, and quadratic
forms of these products inμ. Because there existmany results
for, say, the differential analysis of these scalar functions, the
subsequent differential analysis is no more difficult than the
original form in terms of symmetrizer matrices.

6.3 Analysis of Gaussian kernel-based non-parametric data
smoothers

A general goal of non-parametric data smoothing is to gener-
ate smooth visualizations of discretized data for exploratory
data analysis, e.g. see Simonoff (1996) for an overview. Let
X1,X2, . . . ,Xn be a random sample drawn from a com-
mon density f . The kernel density estimator of D⊗r f with
Gaussian kernel isD⊗r f̂H(x) = n−1∑n

i=1 D
⊗rφH(x−X j ),

where H is a positive definite bandwidth matrix. Hence, all
the techniques introduced in the previous sections are quite
useful to obtain an efficient implementation of this estimator
in practice.

It should be noted that the computation of this kernel den-
sity derivative estimator can be expedited using different and
complementary approaches to ours if the bandwidth matrix
H is constrained to being a diagonal matrix; e.g. the binned
kernel estimators of Wand (1994), and the fast Gauss trans-
form based estimators of Raykar et al. (2010). On the other
hand, our goal is to produce efficient algorithms for use with
maximally general unconstrained bandwidth matrices.

The crucial factor in the performance of a kernel estima-
tor is the selection of the bandwidth matrix H of smoothing
parameters. Themean integrated squared error (MISE) of the
kernel density derivative estimator is defined as

MISEr (H) = E

∫
‖D⊗r f̂H(x) − D⊗r f (x)‖2 dx,

where ‖ ·‖ denotes the usual Euclidean norm. Under suitable
regularity conditions, Chacón et al. (2011) showed that as
n → ∞ the MISE can be approximated by

AMISEr (H) = n−1|H|−1/2 tr
(
(H−1)⊗rR(D⊗rφ)

)

+ (−1)r

4 [(vec� Idr ) ⊗ (vec� H)⊗2]ψ2r+4,

where R(g) = ∫
g(x)g(x)� dx for a vector-valued func-

tion g, and ψ s = ∫
D⊗s f (x) f (x) dx. Thus the minimizer

of AMISEr is a bandwidth matrix with an asymptotically
optimal L2 risk.

The usual approach to select the bandwidthmatrixH from
the data is based on first estimating the MISE using the data
sample, and then selecting the bandwidth that minimizes the

obtained estimate of the MISE. Here, the step regarding the
estimation of theMISE typically involves the computation of
V -statistics of degree 2 based on higher order derivatives of
the Gaussian density function. For instance, the three meth-
ods for bandwidth selection proposed in Chacón and Duong
(2013) are based, respectively, on the following three esti-
mators of the MISE

CVr (H) = (−1)r vec� Idr
{
n−2

n∑

i, j=1

D⊗2rφ2H(Xi − X j )

−2[n(n − 1)]−1
∑

i = j

D⊗2rφH(Xi − X j )

}

PIr (H) = n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rφ)

}

+ (−1)r

4 [(vec� Id)⊗r ⊗ (vec� H)⊗2]ψ̂2r+4(G)

SCVr (H) = n−1|H|−1/2 tr
{
(H−1)⊗rR(D⊗rφ)

}

+ (−1)r vec� Idr n−2

×
n∑

i, j=1

D⊗2r{φ2H+2G − 2φH+2G + φ2G
}
(Xi − X j )

where ψ̂ s(G) = n−2∑n
i, j=1D

⊗sφG(Xi − X j ) is a kernel
estimator of ψ s for a given even number s, based on a pilot
bandwidth matrixG. These estimators of the MISE are com-
monly referred to as cross validation, plug-in and smoothed
cross validation criteria, respectively.

The zero-th order derivative case poses little problem for
computation. However, if higher order derivatives are con-
sidered, we quickly run into computational difficulties. Lin
and Xi (2010) reduced the computational burden of gen-
eral U -statistics by aggregating U -statistics of random sub-
samples. Here, a different approach is taken by seeking com-
putationally efficient forms for the full sample, restricted to
V -statistics of degree 2 based on derivatives of the Gaussian
density function.

Let us denoteηr,s(x;B,�) = [(vec� Id)⊗r⊗(vec� B)⊗s]
D⊗2r+2sφ�(x) for a d × d symmetric matrix B. Define also
ηr (x;�) ≡ ηr,0(x; Id ,�) = (vec� Id)⊗rD⊗2rφ�(x). It is
easy to show that the previous bandwidth selection criteria
can be expressed using these functions, so that

CVr (H) = (−1)r
{
n−2

n∑

i, j=1

ηr (Xi − X j ; 2H)

−2[n(n − 1)]−1
∑

i = j

ηr (Xi − X j ;H)

}
,

PIr (H) = 2−(d+r)π−d/2n−1|H|−1/2νr (H−1; 0, Id)
+ (−1)r

4 n−2
n∑

i, j=1

ηr,2(Xi − X j ;H,G),

SCVr (H) = 2−(d+r)π−d/2n−1|H|−1/2νr (H−1; 0, Id)

123



Stat Comput (2015) 25:959–974 967

+(−1)r n−2
n∑

i, j=1

{
ηr (Xi − X j ; 2H + 2G)

−2ηr (Xi−X j ;H + 2G) + ηr (Xi−X j ; 2G)
}
,

where it should be noted that the equivalence in the first term
of the plug-in and smoothed cross validation criteria follows
from Lemma 3.iv) in Chacón et al. (2011).

Thus, the key for an efficient implementation of these cri-
teria is to develop a fast recursive algorithm to compute the
η functionals. All the developments in the previous sections
can be used for this goal by taking into account the following
new result.

Theorem 4 For a fixed x, the previous η functionals are
related to the ν functionals as follows

ηr (x;�) = φ�(x)νr
(
Id;�−1x,−�−1)

ηr,s(x;B,�) = φ�(x)νr,s
(
Id ,B;�−1x,−�−1).

The recursive formulation allows for a more efficient opti-
mization algorithm to obtain the minimizer of the corre-
sponding bandwidth selection criteria, and these minimizers
are commonly used as the basis for data-based optimal band-
width matrices, whose asymptotic and finite sample proper-
ties were studied in Chacón and Duong (2013).

For large n, evaluating the double sum in the previous
V -statistics can pose two different, in some sense dual, prob-
lems. If we enumerate singly the data difference Xi − X j ,
then this increases the computation time in n2. If we wish to
take advantage of vectorized computations offered in many
software packages, then this requires storing an n2×d matrix
inmemorywhich is not always feasible. Thus we have to find
the right compromise between execution speed and memory
usage on commonly available desktops computers.

Following Theorem 4, any V -statistic of the form
Qr (�) = n−2∑n

i, j=1 ηr (Xi − X j ;�) can be decomposed

as a double sum of products of νr
(
Id;�−1(Xi −X j ),−�−1

)

with φ�(Xi −X j ). The two most computationally intensive
steps involve the cumulants

κr
(
Id;�−1(Xi − X j ),−�−1)

= (−2)r−1(r − 1)!
×{− tr(�−r ) + (Xi − X j )

��−r−1(Xi − X j )
}

and the normal densities

φ�(Xi − X j ) = (2π)−d/2|�|−1/2 exp
{− 1

2 (Xi − X j )
��−1(Xi − X j )

}
.

The time consuming step in common is the double sum of the
terms of the form (Xi −X j )

��−�(Xi −X j ) for some power
� ≥ 1 of �−1. If we decouple this term into components

(Xi − X j )
��−�(Xi − X j ) = X�

i �−�Xi + X�
j �−�X j

−2X�
i �−�X j , (12)

then each of them are efficiently handled by software in terms
of execution but with memory requirements only slightly
larger than storing the original sample X1, . . . ,Xn , since the
differences Xi − X j , j = 1, . . . , n, are kept in memory for
each i singly rather than all for i as we loop over i .

7 Numerical comparisons

The implementation of all the algorithms described in this
paper are contained in the ks library (Duong 2007) in the R
statistical programming language (R Core Team 2013), and
in a separate, specific script (OnlineResource 1)which is also
available from the authors’ websites. For each scenario, each
algorithm was executed 10 times in R 3.0.1 under Ubuntu
12.04 LTS 64 bits, installed on a Dell Precision T6700 with
8 Intel Xeon E5-2609@2.40GHz CPUs and 32 Gb RAM.
Since the actual execution times are highly dependent on the
computing set-up used, it is more useful to focus on relative
execution times to indicate likely performance gains on other
computing set-ups.

7.1 Symmetrizer matrix

A carefully designed algorithm for the direct implementation
was used so that, in fact, only one of the two loops in (4) is
needed, which moreover selects to loop over i = 1, . . . , dr

if dr < r ! (with r ! the cardinality of Pr ), and over σ ∈ Pr

otherwise. This direct implementation based on Eq. (4) was
compared to the recursive implementation in Algorithm 1,
where the ratio of mean direct execution time to the mean
recursive execution time are presented in Table 1 for dimen-
sion d = 2, 3, 4 and order r = 2, 4, 6, 8. Due to memory
restrictions, the symmetrizer matrix for d = 4, r = 8 was
not able to be computed.

For d = 2, the recursive algorithm seems to be faster
from r = 6 on, and is already more than 300 times faster for
r = 8. Thus, for low values of d and large r , the recursive
implementation is preferable. But as d increases it is harder

Table 1 Comparison of mean execution times for direct and recursive
implementations to compute the symmetrizer matrix Sd,r , for dimen-
sion d = 2, 3, 4 and order r = 2, 4, 6, 8

r = 2 r = 4 r = 6 r = 8

d = 2 Direct/recursive 0.42 0.75 9.78 386.49

d = 3 Direct/recursive 0.20 0.71 0.66 0.52

d = 4 Direct/recursive 0.52 0.36 0.04 –

Each row is the ratio of the mean direct time to the mean recursive time

123



968 Stat Comput (2015) 25:959–974

Fig. 1 Proportion of non-zero elements in the lower triangular part of
Sd,r as a function of r . From top to bottom the lines correspond to
d = 2, . . . , 7

to notice the advantage of the recursive approach, since it
is noticeable only for large values of r . Certainly, it must be
pointed out that the direct computation of the simplified form
(4) makes it quite competitive for low values of d, which are
the most commonly used in practice, since handling these
huge matrices with the current computational power seems
inadvisable for d ≥ 5 unless r is very low.

In fact, using the direct formula (4) can also be useful to
alleviate the problem of the storage space needed, because
these sparse matrices have a tiny proportion of non-zero ele-
ments, especially for higher values of d. Since the sym-
metrizer matrices are symmetric (Schott 2003), specifying
only its lower triangular part (including the diagonal) suffices
to recover the whole matrix. Figure 1 displays the proportion
of the dr (dr +1)/2 entries in the lower triangular part ofSd,r

that are not null. Thus, for instance, only 70 elements need
to be stored to recover S7,2 (which has 2,401 entries), and
only 9,801 elements are needed to recover S6,4 (which has
1,679,616 entries). It remains as an interesting open problem
to find an explicit formula for the number of non-zero entries
of Sd,r .

7.2 Product of a symmetrizer matrix and a vector

A similar experiment was conducted to compare the compu-
tation times of the direct approach to compute the product
of a symmetrizer matrix and a vector, which is based on
Eq. (5), and the recursive approach presented in Algorithm
2. From Table 2, for this problem, the recursive approach
proved to be faster than the direct one in all the scenarios.
Moreover, the reductions in time achieved by the recursive
algorithm can be extremely large for values of d and r com-
monly encountered in practice. For instance, for r = 8 the
recursive algorithm produced a result in about 1,000–2,000

Table 2 Comparison of mean execution times for direct and recursive
implementations to compute the product of the symmetrizermatrixSd,r
and a dr -vector, for dimension d = 2, 3, 4 and order r = 2, 4, 6, 8

r = 2 r = 4 r = 6 r = 8

d = 2 Direct/recursive 4.00 2.83 22.85 1,878.65

d = 3 Direct/recursive 3.50 2.00 28.03 2,595.11

d = 4 Direct/recursive 2.00 2.20 21.35 1,150.85

Each row is the ratio of the mean direct time to the mean recursive time

Table 3 Comparison of mean execution times for direct and recursive
implementations to compute D⊗rφ(·) the r -th derivative of d-variate
standard Gaussian density, for d = 2, 3, 4 and order r = 2, 4, 6, 8, 10

r = 2 r = 4 r = 6 r = 8 r = 10

d = 2

Direct/recursive 1.18 0.68 0.66 0.59 0.66

Direct/unique 1.93 0.76 0.83 1.12 8.00

d = 3

Direct/recursive 0.92 0.77 0.65 0.93 0.79

Direct/unique 0.58 0.48 0.62 3.01 7.46

d = 4

Direct/recursive 1.00 0.81 0.94 0.96 0.85

Direct/unique 0.48 0.32 0.83 3.93 7.96

In each pair of rows, the upper row is the ratio of mean direct time to the
mean time of the first recursive implementation, and the lower row is the
ratio of the mean direct time to the mean time of the second recursive
implementation where only the unique elements are computed

times faster. In the previous section, the symmetrizer matrix
S4,8 was not able to be computed,whereas the productS4,8v,
for v = (1, 2, . . . , 48) posed no memory problems.

7.3 Derivatives of a Gaussian density function

We compared the performance of computing the r -th deriva-
tive of d-variate standard Gaussian density D⊗rφ(1, . . . , 1),
for dimension d = 2, 3, 4 and order r = 2, 4, 6, 8, 10. In
Table 3, the upper row in each pair of rows compares the
direct implementation based onEqs. (1) and (2),which never-
theless makes use of Algorithm 2 to obtain the multiplication
by the symmetrizer matrix, to the first recursive algorithm
based on Eq. (7). The lower row in each pair of rows com-
pares the direct implementation to the second recursive algo-
rithm based on Algorithm 3 where only the unique elements
are computed. We observed that computing the unique ele-
ments of the Hermite vector polynomial eventually becomes
faster, as r increases, than the direct and/or first recursive
implementations.

123



Stat Comput (2015) 25:959–974 969

Table 4 Comparison of mean execution times for direct and recur-
sive implementations to compute μr the vector moment of a d-variate
standard Gaussian random variable, for d = 2, 3, 4 and order r =
2, 4, 6, 8, 10

r = 2 r = 4 r = 6 r = 8 r = 10

d = 2

Direct/recursive 1.79 0.99 0.80 0.82 0.96

Direct/unique 4.67 3.69 1.43 1.20 2.63

d = 3

Direct/recursive 3.23 1.37 1.10 1.25 1.13

Direct/unique 6.45 1.00 0.66 2.69 7.14

d = 4

Direct/recursive 4.31 1.05 0.76 1.06 1.02

Direct/unique 3.11 0.79 0.57 4.13 7.78

In each pair of rows, the upper row is the ratio of mean direct time to the
mean time of the first recursive implementation, and the lower row is the
ratio of the mean direct time to the mean time of the second recursive
implementation where only the unique elements are computed

7.4 Moments of a Gaussian random variable

We compared the performance of computing the vector r -
th moment μr for a standard normal Gaussian N (0, Id), for
dimension d = 2, 3, 4 and order r = 2, 4, 6, 8, 10. From
Table 4, there does not appear to be a clearly more efficient
implementation. In the upper row in each pair of rows, com-
paring the direct implementation to the first recursive algo-
rithm based on Eqs. (7) and (9), many of these time ratios
are around one, indicating a more or less equal computa-
tional load. In the lower row in each pair of rows, comparing
the direct implementation to the second recursive algorithm
where only the unique elements are computed based onAlgo-
rithm 3 and Eq. (9), the latter tends to be more efficient than
the direct and the first recursive implementation.

7.5 Expected value of quadratic forms in Gaussian random
variables

Recall that the expected value of (r, s)-the product of the
quadratic form for a d-variate Gaussian random variable X
is νr,s(A,B) = E[(X�AX)r (X�BX)s], and that νr,s involves

Table 5 Comparison of mean execution times for direct and recursive
implementations to compute νr,s the expected value of (r, s)-th product
of the quadratic form of a d-variate Gaussian random variable, for d =
2, 3, 4 and orders (r, s), 1 ≤ s ≤ r, r + s ≤ 5

(r, s)

(1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1)

d = 2

Direct/recursive 1.36 1.22 1.20 0.90 1.08 1.08

Direct/unique 0.75 0.87 1.18 0.87 2.44 2.37

Direct/cumulant 1.07 1.47 1.64 1.83 3.51 5.33

d = 3

Direct/recursive 0.94 1.06 1.25 1.25 1.14 1.14

Direct/unique 0.40 0.56 2.86 2.84 7.76 7.74

Direct/cumulant 1.33 2.70 18.21 24.68 228.98 336.00

d = 4

Direct/recursive 1.11 1.05 1.35 1.10 0.89 0.88

Direct/unique 0.27 0.74 4.93 4.63 7.17 7.15

Direct/cumulant 1.33 10.20 290.50 334.77 3,797.22 4,823.30

In each group of rows, the upper row is the ratio of mean direct time
to the mean time of the first recursive implementation, the middle row
is the ratio of the mean direct time to the mean time of the second
recursive implementation where only the unique elements of the vector
moment are computed, and the last row is the ratio of the mean direct
time to the mean time of the third recursive implementation based on
moment-cumulants

the (2r+2s)-th moments ofX, so we investigated the perfor-
mance for dimension d = 2, 3, 4 and (r, s) such that 1 ≤ s ≤
r, r + s ≤ 5, with A = diag(1, . . . , d),B = diag(d, . . . , 1).
In the upper row in each group of rows of Table 5, compar-
ing the direct implementation based on Eq. (10) to the first
recursive algorithm based on Eqs. (7), (9–10), most of these
time ratios are around one, indicating a more or less equal
computational load. In the middle row in each group of rows,
comparing the direct implementation to the second recursive
algorithmbased onAlgorithm3 andEquations (9–10), where
only the unique elements of the vectormoment are computed,
most of these time ratios are around one for r + s < 4, and
greater than one for r+s ≥ 4. In the lower row in each group
of rows, comparing the direct implementation to the third

Table 6 Comparison of mean execution times for direct and recursive implementations to compute Qr the Gaussian kernel based V -statistic, for
dimension d = 2, 3, 4, derivative order r = 0, 2, 4, and sample size n = 100, 1,000, 10,000

n = 100 n = 1,000 n = 10,000

r = 0 r = 2 r = 4 r = 0 r = 2 r = 4 r = 0 r = 2 r = 4

d = 2 Direct/cumulant 0.55 2.93 8.48 6.86 23.97 44.33 4.85 17.47 59.33

d = 3 Direct/cumulant 0.99 4.04 118.05 7.87 42.51 163.42 7.07 32.17 258.38

d = 4 Direct/cumulant 1.57 7.06 347.71 9.05 64.52 548.14 6.36 46.83 1,010.99

Each row is the ratio of the mean direct time to the mean recursive time based on moment-cumulants

123



970 Stat Comput (2015) 25:959–974

recursive algorithm based on the moment-cumulant results
of Eq. (11) and Theorem 3, the computational speed was
multiplied by 10- to 1,000-fold for many cases, as d and/or
(r + s) increase. For the (r, s) pairs considered, this third
cumulants-based recursive form is generally the most effi-
cient approach, with more and more substantial speed-ups as
the dimension and/or the derivative order increase.

7.6 Gaussian kernel based V -statistics

Samples of size n = 100, 1,000, 10,000were drawn from the
d-variate standard Gaussian distribution N (0, Id), for d =
2, 3, 4, and from these samples the V -statistic Qr (Id) =
n−2∑n

i, j=1 ηr (Xi − X j ; Id) was computed for r = 0, 2, 4.
The direct implementation is based onEqs. (1) and (2) and the
recursive cumlants-based algorithm combining Theorem 4
andEq. (12).As expected, Table 6 shows that the time savings
increase with increasing dimension and increasing derivative
order, with 10- to 1,000-fold improvements in most cases.

Acknowledgments We thank two anonymous referees for a careful
reading of the paper. This work has been partially supported by grants
MTM2010-16660 (both authors) and MTM2010-17366 (first author)
from the SpanishMinisterio deCiencia e Innovación. The second author
also received funding from the program “Investissements d’ avenir”
ANR-10-IAIHU-06

Appendix 1: Proofs

Proofs of the results in Section 3

The key elements to prove Theorem 1 are the following two
lemmas.

Lemma 1 For every j ∈ Nr+1 := {1, 2, . . . , r + 1} denote
by τ j ∈ Pr+1 the permutation defined by τ j ( j) = r + 1,
τ j (r + 1) = j and τ j (i) = i for j = i = r + 1. Then we
can express

Pr+1 = {
σ ◦ τ j : σ ∈ Pr , j ∈ Nr+1

}
.

Proof As any σ ∈ Pr can be thought as an element of Pr+1

by defining σ(r + 1) = r + 1, consider the map ϕ : Pr ×
Nr+1 → Pr+1 given by ϕ(σ, j) = σ ◦ τ j . We conclude
by noting that this map is bijective, with inverse given by
ϕ−1(σ̃ ) = (σ, j), where j = σ̃−1(r +1) is such that σ̃ ( j) =
r + 1 and, for i ∈ Nr , σ(i) = σ̃ (i) if σ̃ (i) = r + 1 and
σ(i) = σ̃ (r + 1) if σ̃ (i) = r + 1. ��
Lemma 2 If A ∈ Mm×n, B ∈ Mp×q and a, b ∈ R

d , then

A ⊗ a� ⊗ B ⊗ b� = (A ⊗ b� ⊗ B ⊗ a�) · (Idn ⊗ Kq,d) ·
(In ⊗ Kd,dq).

Proof Use the properties of the commutation matrix to first
permute a� ⊗ B with b�, keeping A in the same place, and
then to permute a� withB keepingA⊗b� in the same place.

��

The previous lemmas are helpful to manipulate the origi-
nal definition ofSd,r and thus obtain the proof of Theorem 1.

Proof of Theorem 1 Note that for any two vectors v,w ∈ R
d

we have vw� = v ⊗ w�. Then, with the identification Pr ⊂
Pr+1 and the notation τ j as in Lemma 1, for any σ ∈ Pr and
j ∈ Nr+1,

r+1⊗

�=1

ei�e
�
iσ(τ j (�))

=
j−1⊗

�=1

ei�e
�
iσ(�)

⊗ ei j e
�
ir+1

⊗
r⊗

�= j+1

ei�e
�
iσ(�)

⊗eir+1e
�
iσ( j)

=
{ r⊗

�=1

ei�e
�
iσ(�)

⊗ eir+1e
�
ir+1

}

·(Id j ⊗ Kdr− j ,d)(Id j−1 ⊗ Kd,dr− j+1) (13)

where for the second equality we have applied Lemma 2with
a = eir+1 , b = eiσ( j) ,

A =
j−1⊗

�=1

ei�e
�
iσ(�)

⊗ ei j ∈ Md j ,d j−1 and

B =
r⊗

�= j+1

ei�e
�
iσ(�)

⊗ eir+1 ∈ Mdr− j+1,dr− j .

Taking Lemma 1, (13) and the definition of Td,r+1 into
account,

Sd,r+1

= 1

(r + 1)!
d∑

i1,i2,...,ir+1=1

∑

σ∈Pr+1

r+1⊗

�=1

ei�e
�
iσ(�)

= 1

(r + 1)!
d∑

i1,i2,...,ir+1=1

∑

σ∈Pr

r+1∑

j=1

r+1⊗

�=1

ei�e
�
iσ(τ j (�))

= 1

r !
d∑

i1,i2,...,ir+1=1

∑

σ∈Pr

{ r⊗

�=1

ei�e
�
iσ(�)

⊗ eir+1e
�
ir+1

}
Td,r+1

=
{
Sd,r ⊗

(∑d
ir+1=1 eir+1e

�
ir+1

)}
Td,r+1

= (Sd,r ⊗ Id)Td,r+1,

as Id = ∑d
i=1 ei e

�
i . ��

To obtain a recursive formula for the matrix Td,r we first
need to write the matrices Kd p+1,d and Kd,d p+1 depending
on Kd p,d and Kd,d p , respectively.

Lemma 3 For any p ≥ 0

Kd p+1,d = (Id p ⊗ Kd,d)(Kd p,d ⊗ Id)

= (Id ⊗ Kd p,d)(Kd,d ⊗ Id p )

Kd,d p+1 = (Kd,d p ⊗ Id)(Id p ⊗ Kd,d)

= (Kd,d ⊗ Id p )(Id ⊗ Kd,d p ).

123



Stat Comput (2015) 25:959–974 971

Proof Usingpart i)ofTheorem3.1 inMagnus andNeudecker
(1979), we can write

Kd p+1,d =
d∑

j=1

(e�
j ⊗ Id p+1 ⊗ e j ) =

d∑

j=1

(e�
j ⊗ Id p ⊗ Id ⊗ e j )

= (Id p ⊗ Kd,d)

d∑

j=1

(e�
j ⊗ Id p ⊗ e j ⊗ Id)

= (Id p ⊗ Kd,d)(Kd p,d ⊗ Id).

The second equality for Kd p+1,d follows similarly and the
formulas for Kd,d p+1 can be derived from the previous ones
by noting that Kd,d p+1 = K�

d p+1,d
. ��

Using the previous lemma we obtain a straightforward
proof of Theorem 2.

Proof of Theorem 2 Using Lemma 3 for the first r −1 terms
in the definition of Td,r+1, and the property that (AC) ⊗
(BD) = (A ⊗ B)(C ⊗ D), it follows that

(r + 1)Td,r+1

=
r−1∑

j=1

(Id j ⊗ Kdr− j ,d)(Id j−1 ⊗ Kd,dr− j+1)

+(Idr−1 ⊗ Kd,d) + Idr+1

=
r−1∑

j=1

[
Id j ⊗ {(Idr− j−1 ⊗ Kd,d)(Kdr− j−1,d ⊗ Id)}

]

×[Id j−1 ⊗ {(Kd,dr− j ⊗ Id)(Idr− j ⊗ Kd,d)}
]

+(Idr−1 ⊗ Kd,d) + Idr+1

= (Idr−1 ⊗ Kd,d)

×
[{ r∑

j=1

(Id j ⊗ Kdr− j−1,d)(Id j−1 ⊗ Kd,dr− j )
}

⊗ Id
]

×(Idr−1 ⊗ Kd,d) + (Idr−1 ⊗ Kd,d)

= (Idr−1 ⊗ Kd,d)(rTd,r ⊗ Id)(Idr−1 ⊗ Kd,d)

+(Idr−1 ⊗ Kd,d),

where the third equality makes use of Id p ⊗ Idq = Id p+q . ��

Proofs of the results in Section 4

As noted in the text, the proof of Corollary 1 follows by
induction on r .

Proof of Corollary 1 For r = 1 the formula immediately
follows, since Sd,1 = Id = Td,1. The induction step is
easily deducedbyusing formulaSd,r+1 = (Sd,r⊗Id)Td,r+1

from Theorem 1 using the same tools as before, taking into
account that Id p ⊗ Id = Id p+1 and that (AC) ⊗ (BD) =
(A ⊗ B)(C ⊗ D). ��

Corollary 2 is deduced from Corollary 1 as follows.

Proof of Corollary 2 Clearly, the Kronecker product⊗r
�=1 ei� of r vectors ei1 , . . . , eir of the canonical basis of

R
d gives the p(i1, . . . , ir )-th vector of the canonical basis

in R
dr (i.e., the p(i1, . . . , ir )-th column of Idr ). There-

fore, any vector v = (v1, . . . , vdr ) ∈ R
dr can be writ-

ten as v = ∑dr
i=1 vi

⊗r
�=1 e(p−1(i))� and so, by linearity,

it suffices to obtain a simple formula for expressions of
the type (Td,k ⊗ Idr−k )(

⊗r
�=1 ei� ). Further, since (Td,k ⊗

Idr−k )(
⊗r

�=1 ei� ) = {
Td,k

(⊗k
�=1 ei�

)}⊗⊗r
�=k+1 ei� , it fol-

lows that it is enough to provide a simple interpretation for
the multiplications Td,k

(⊗k
�=1 ei�

)
for k = 2, . . . , r .

Finally, using the properties of the commutation matrix
(Magnus and Neudecker 1979), it can be checked that

Td,k

( k⊗

�=1

ei�

)
= 1

k

k∑

j=1

{ j−1⊗

�=1

ei� ⊗ eik ⊗
k−1⊗

�= j+1

ei� ⊗ ei j

}

(14)

with the convention that
⊗k

�= j ei� = 1 if j > k. In words,

kTd,k
(⊗k

�=1 ei�
)
consists of adding up all the possible k-fold

Kronecker products in which the last factor is interchanged
with the j-th factor, for j = 1, 2, . . . , k. ��

Proofs of the results in Section 6

First, let us point out why the formula for the joint cumulant
in Corollary 3.3.1 ofMathai and Provost (1992) is not always
correct. Using the notation of Theorem3 above, their formula
reads as follows: for r ≥ 1, s ≥ 1,

κr,s(A,B) = 2r+s−1(r + s − 1)! tr (Fr1Fs
2

)

+2r+s−1(r + s − 2)!{r(r − 1)

tr
(
Fr−1
1 Fs

2F1�
−1μμ�)

+s(s − 1) tr
(
Fs−1
2 Fr1F2�

−1μμ�)

+2rs tr
(
Fr1F

s
2�

−1μμ�)}. (15)

To further simplify our comparison, consider for example
the case μ = 0, and r = s = 2, so that (15) simply reads
23 6 tr

(
F2
1F

2
2

)
. Writing down explicitly the six elements in

MP2,2 and applying the cyclic property of the trace, the
correct form from Theorem 3 has

23 2!2!
∑

i∈MP2,2

tr
(
Fi1Fi2Fi3Fi4

)
/4

= 23
{
4 tr
(
F2
1F

2
2

)+ 2 tr
(
F1F2F1F2

)}

instead. Both formulas involve 6 traces ofmatrices, all having
two factors F1 and another two factors F2. However, despite
the aforementioned cyclic property of the trace, it is not true
in general that tr

(
F1F2F1F2

) = tr
(
F2
1F

2
2

)
, and that causes

an error in formula (15). A similar argument shows the reason
why some of the terms involving μ in (15) are also wrong.

123



972 Stat Comput (2015) 25:959–974

A sufficient condition for formula (15) to be correct is
that F1F2 = F2F1. If that condition holds, then the correct
formula for the joint cumulant further simplifies to

κr,s(A,B) = 2r+s−1(r + s − 1)!{ tr (Fr1Fs
2

)

+(r + s) tr
(
Fr1F

s
2�

−1μμ�)}.

The proof of Theorem 3 is based on Matrix Calculus. Let
us introduce some further notation to simplify the calcula-
tions. For i = 1, 2, denote

Ci ≡ Ci (t1, t2) = (Id − 2t1F1 − 2t2F2)
−1Fi

and, similarly, C3 ≡ C3(t1, t2) = (Id − 2t1F1 − 2t2F2)
−1

�−1μμ�. Taking into account the formula for the differential
of the inverse of a matrix given in Magnus and Neudecker
(1999, Chapter 8) notice that the introduced notation allows
for simple expressions for the following differentials: for any
i ∈ {1, 2, 3} and j ∈ {1, 2}, dCi = 2C jCi dt j . In words,
differentiating any of these matrix functions with respect to
t j consists on pre-multiplying by 2C j .

More generally, for i1, . . . , ir ∈ {1, 2}, j ∈ {1, 2} and
m ∈ {1, 2, 3} we have
d(Ci1 · · ·CirCm)

= {d(Ci1 · · ·Cir )}Cm + Ci1 · · ·Cir dCm

= 2

{
r∑

�=1

(
�−1∏

k=1

Cik

)
(C jCi� )

(
r∏

k=�+1

Cik

)
Cm

+Ci1 · · ·CirC jCm

}
dt j

= 2
r+1∑

�=1

(
�−1∏

k=1

Cik

)
C j

(
r∏

k=�

Cik

)
Cm dt j , (16)

where
∏b

k=a Cik is to be understood as Id if a > b.
The key tool for the proof of Theorem 3 is the following

lemma, which is indeed valid for any matrix function having
the properties of Cm exhibited above.

Lemma 4 For any m ∈ {1, 2, 3}, consider the function
w(t1, t2) = trCm. Then,

∂r+s

∂tr1∂t
s
2
w(t1, t2) = 2r+s r !s!

∑

i∈MPr,s

tr
(
Ci1 · · ·Cir+sCm

)
.

Proof From(16) it easily follows thatdrCm=2r r !Cr
1Cm dtr1 ,

so that

∂r

∂tr1
w(t1, t2) = 2r r ! tr (Cr

1Cm
)
.

Hence, to conclude what we need to show is that, for s =
0, 1, 2, . . .,

∂s

∂t s2
tr
(
Cr
1Cm

) = 2s s!
∑

i∈MPr,s

tr
(
Ci1 · · ·Cir+sCm

)
(17)

To prove (17) we proceed by induction on s, since the initial
step corresponding to s = 0 is clear. Assuming that (17) is
true for the (s − 1)-th derivative, the induction step consists
of showing that the formula also holds for the s-th derivative;
that is,

∑

i∈MPr,s−1

∂

∂t2
tr
(
Ci1 · · ·Cir+s−1Cm

)

= 2s
∑

i∈MPr,s

tr
(
Ci1 · · ·Cir+sCm

)
. (18)

Taking into account (16), to prove (18) it suffices to show
that the set

Ar,s =
r+s⋃

�=1

{(i1, . . . , i�−1, 2, i�, . . . , ir+s−1) : i ∈ MPr,s−1}

= {(2, i1, . . . , ir+s−1) : i ∈ MPr,s−1}
∪{(i1, 2, . . . , ir+s−1) : i ∈ MPr,s−1}
∪ · · · ∪ {(i1, . . . , ir+s−1, 2) : i ∈ MPr,s−1}

coincides precisely with the multiset that contains s copies
of each of the elements ofMPr,s . This can be showed as fol-
lows: it is clear that all the elements inAr,s belong toMPr,s .
On the hand, notice that any vector i = (i1, . . . , ir+s) ∈
MPr,s contains the number 2 in exactly s of its coordi-
nates, which can be distributed along any of the r + s posi-
tions. If one of those number 2 coordinates is deleted from i ,
the resulting vector belongs to MPr,s−1, and repeating that
process for all the s coordinates with the number 2, then s
copies of i are found Ar,s . ��

Making use of Lemma 4 next we prove Theorem 3.

Proof of Theorem 3 Magnus (1986) showed that the joint
cumulant generating function of X�AX and X�BX can be
written as ψ(t1, t2) = u(t1, t2) − 1

2μ
��−1μ + v(t1, t2),

where

u(t1, t2) = − 1
2 log |Id − 2t1F1 − 2t2F2| and

v(t1, t2) = 1
2 tr
{
(Id − 2t1F1 − 2t2F2)

−1�−1μμ�},

with F1 = A� and F2 = B�. Since for r + s ≥ 1 the (r, s)-
th joint cumulant is defined as κr,s(A,B) = ∂r+s

∂tr1∂t s2
ψ(0, 0), it

suffices to show that

∂r+s

∂tr1∂t
s
2
ψ(t1, t2) = 2r+s−1r !s!

∑

i∈MPr,s

tr
[
Ci1 · · ·Cir+s

{
Id/(r + s) + C3

}]
.

With the previous notations, v(t1, t2) = 1
2 trC3, so

Lemma 4 immediately yields the desired formula for the sec-
ond summand.

For the first one, combining the chain rulewith the formula
for the differential of a determinant given in Magnus and

123



Stat Comput (2015) 25:959–974 973

Neudecker (1999, Chapter 8), it follows that ∂
∂t1

u(t1, t2) =
trC1. So, applying Lemma 4 to ∂

∂t1
u(t1, t2), we obtain

∂r+s

∂tr1∂t
s
2
u(t1, t2) = 2r+s−1 (r − 1)!s

×
∑

i∈MPr−1,s

tr
(
Ci1 · · ·Cir+s−1C1

)
.

By the symmetry in (t1, t2) and (r, s) of the preceding argu-
ment we come to

(r + s) × ∂r+s

∂tr1∂t
s
2
u(t1, t2)

= 2r+s−1 r !s!
{ ∑

i∈MPr−1,s

tr
(
Ci1 · · ·Cir+s−1C1

)

+
∑

i∈MPr,s−1

tr
(
Ci1 · · ·Cir+s−1C2

)}
.

The proof is finished by noting that, clearly,

MPr,s = {(i1, . . . , ir+s−1, 1) : i ∈ MPr−1,s}
∪{(i1, . . . , ir+s−1, 2) : i ∈ MPr,s−1}.

��
Although Theorem 4 suffices to obtain a fast recursive

implementation of the CV, PI and SCV criteria, here a
slightly more general version of this result is shown. Let
us denote η̃r,s(x;A,B,�) = [(vec� A)⊗r ⊗ (vec� B)⊗s]
D⊗2r+2sφ�(x) for d × d symmetric matrices A,B and also
η̃r (x;A,�) ≡ η̃r,0(x;A, Id ,�) = (vec� A)⊗rD⊗2rφ�(x).
Notice that the η functionals can be seen to be particular cases
of the η̃ functionals by setting A = Id .

Theorem 5 For a fixed x, the previous η̃ functionals are
related to the ν functionals as follows

η̃r (x;A,�) = φ�(x)νr
(
A;�−1x,−�−1)

η̃r,s(x;A,B,�) = φ�(x)νr,s
(
A,B;�−1x,−�−1).

Proof Notice that (9) entails νr (A;μ,�) = (vec� A)⊗rH2r

(μ;−�). And from Theorem 3.1 in Holmquist (1996a),
(�−1)⊗2rH2r (x;�) = H2r (�

−1x;�−1). Therefore,

η̃r (x;A,�) = (vec� A)⊗rD⊗2rφ�(x)

= φ�(x)(vec� A)⊗r (�−1)⊗2rH2r (x;�)

= φ�(x)(vec� A)⊗rH2r (�
−1x;�−1)

= φ�(x)νr
(
A;�−1x,−�−1),

as desired. The proof for η̃r,s follows analogously. ��

Appendix 2: Generation of all the permutations with rep-
etitions

A preliminary step to the methods described in Sects. 3, 4
and 5 involves generating the set of all the permutations with

repetitions PRd,r . This set can be portrayed as a matrix P
of order dr × r , whose (i, j)-th entry represents the j-th
coordinate of the i-th permutation in PRd,r .

Moreover, in view of Sect. 5 it seems convenient to keep
the natural order of these permutations induced by the formu-
lationPRd,r = {p−1(i) : i = 1, . . . , dr }. Hence, in our con-
struction the vector p−1(i) will constitute the i-th row of P.

Let �x� denote the integer part of a real number x , that
is, the largest integer not greater than x . Then, if i =
p(i1, . . . , ir ) = 1 + ∑r

j=1(i j − 1)d j−1 with i1, . . . , ir ∈
{1, . . . , d}, it is not hard to show that �(i − 1)/dk−1� =∑r

j=k(i j − 1)d j−k for k = 1, . . . , r , so that the j-th coordi-

nate of the vector i = (i1, . . . , ir ) = p−1(i) can be expressed
as i j = �(i − 1)/d j−1� − d�(i − 1)/d j� + 1.

Thus, assuming there is a floor() function available
that can be applied in an element-wise form to a matrix and
returns the integer part of each of its entries, the setPRd,r is
efficiently obtained as the matrix P = floor(Q−(r+1)) −
d · floor(Q−1) + 1, where Q is a dr × (r + 1) matrix
whose (i, j)-th entry is (i − 1)/d j−1 for i = 1, . . . , dr and
j = 1, . . . , r + 1, andQ−k refers to the sub-matrix obtained
from Q by deleting the k-th column.

References

Chacón, J.E., Duong, T.: Multivariate plug-in bandwidth selection with
unconstrained pilot bandwidth matrices. Test 19, 375–398 (2010)

Chacón, J.E., Duong, T.: Unconstrained pilot selectors for smoothed
cross validation. Aust. N. Z. J. Stat. 53, 331–335 (2011)

Chacón, J.E., Duong, T.: Bandwidth selection for multivariate density
derivative estimation, with applications to clustering and bump hunt-
ing. Electron. J. Stat. 7, 499–532 (2013)

Chacón, J.E., Duong, T., Wand, M.P.: Asymptotics for general multi-
variate kernel density derivative estimators. Stat. Sinica 21, 807–840
(2011)

Duong, T.: ks: Kernel density estimation and kernel discriminant analy-
sis for multivariate data. J. Stat. Softw. 21(7), 1–16 (2007)

Erdélyi, A.: Higher Transcendental Functions, vol. 2. McGraw-Hill,
New York (1953)

Ghazal, G.A.: Recurrence formula for expectations of products of
quadratic forms. Stat. Probab. Lett. 27, 101–109 (1996)

Henderson, H.V., Searle, S.R.: Vec and vech operators for matrices,
with some uses in Jacobians and multivariate statistics. Can. J. Stat.
7, 65–81 (1979)

Holmquist, B.: The direct product permuting matrices. Linear Multilin-
ear Algeb. 17, 117–141 (1985)

Holmquist, B.: Moments and cumulants of the multivariate normal dis-
tribution. Stoch. Anal. Appl. 6, 273–278 (1988)

Holmquist, B.: The d-variate vector Hermite polynomial of order k.
Linear Algeb. Appl. 237(238), 155–190 (1996a)

Holmquist, B.: Expectations of products of quadratic forms in normal
variables. Stoch. Anal. Appl. 14, 149–164 (1996b)

Isserlis, L.: On a formula for the product–moment coefficient of any
order of a normal frequency distribution in any number of variables.
Biometrika 12, 134–139 (1918)

Kan, R.: From moments of sum to moments of product. J. Multivar.
Anal. 99, 542–554 (2008)

123



974 Stat Comput (2015) 25:959–974

Kumar, A.: Expectation of product of quadratic forms. Sankhyā Ser. B
35, 359–362 (1973)

Lin, N., Xi, R.: Fast surrogates ofU -statistics. Comput. Stat. Data Anal.
54, 16–24 (2010)

Magnus, J.R.: The expectation of products of quadratic forms in normal
variables: the practice. Stat. Neerl. 33, 131–136 (1979)

Magnus, J.R.: The exactmoments of a ratio of quadratic forms in normal
variables. Ann. Econ. Stat. 4, 95–109 (1986)

Magnus, J.R.,Neudecker,H.: The commutationmatrix: someproperties
and applications. Ann. Stat. 7, 381–394 (1979)

Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Appli-
cations in Statistics and Econometrics, Revised Edition. Wiley,
Chichester (1999)

Mathai, A.M., Provost, S.B.: Quadratic Forms in Random Variables:
Theory and Applications. Marcel Dekker, New York (1992)

Meijer, E.: Matrix algebra for higher order moments. Linear Algeb.
Appl. 410, 112–134 (2005)

Phillips, K.: R functions to symbolically compute the central moments
of the multivariate normal distribution. J. Stat. Softw. 33 Code Snip-
pet 1 (2010)

R Core Team: R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna (2013)

Raykar, V.C., Duraiswami, R., Zhao, L.H.: Fast computation of kernel
estimators. J. Comput. Graph. Stat. 19, 205–220 (2010)

Savits, T.H.: Some statistical applications of Faa di Bruno. J. Multivar.
Anal. 97, 2131–2140 (2006)

Schott, J.R.: Kronecker product permutation matrices and their appli-
cation to moment matrices of the normal distribution. J. Multivar.
Anal. 87, 177–190 (2003)

Simonoff, J.S.: Smoothing Methods in Statistics. Springer, Berlin
(1996)

Smith, P.J.: A recursive formulation of the old problem of obtaining
moments from cumulants and vice versa. Am. Stat. 49, 217–218
(1995)

Triantafyllopoulos, K.: On the centralmoments of themultidimensional
Gaussian distribution. Math. Sci. 28, 125–128 (2003)

Wand,M.P.: Fast computation ofmultivariate kernel estimators. J. Com-
put. Graph. Stat. 3, 433–445 (1994)

123


	Efficient recursive algorithms for functionals based on higher order derivatives of the multivariate Gaussian density
	Abstract 
	1 Introduction
	2 Higher order derivatives of Gaussian density functions
	3 Recursive computation of the symmetrizer matrix
	4 Recursive computation of the product of the symmetrizer matrix and a vector
	5 Recursive computation of all the unique partial derivatives of the multivariate Gaussian density
	6 Applications to selected statistical problems
	6.1 Moments of Gaussian random variables
	6.2 Quadratic forms in Gaussian random variables
	6.3 Analysis of Gaussian kernel-based non-parametric data smoothers

	7 Numerical comparisons
	7.1 Symmetrizer matrix
	7.2 Product of a symmetrizer matrix and a vector
	7.3 Derivatives of a Gaussian density function
	7.4 Moments of a Gaussian random variable
	7.5 Expected value of quadratic forms in Gaussian random variables
	7.6 Gaussian kernel based V-statistics

	Acknowledgments
	Appendix 1: Proofs
	Proofs of the results in Section 3
	Proofs of the results in Section 4
	Proofs of the results in Section 6

	Appendix 2: Generation of all the permutations with repetitions
	References




