
Journal of Nonparametric Statistics, 2013
Vol. 25, No. 3, 635–645, http://dx.doi.org/10.1080/10485252.2013.810217

Local significant differences from nonparametric
two-sample tests

Tarn Duonga,b,c*

aTheoretical and Applied Statistics Laboratory (LSTA), University Pierre and Marie Curie – Paris 6,
F-75005 Paris, France; bInstitute of Translational Neurosciences, Pitié-Salpêtrière Hospital, F-75005
Paris, France; cMolecular Mechanisms of Intracellular Transport Laboratory, Institut Curie, CNRS,

UMR144, F-75248 Paris, France

(Received 6 September 2012; final version received 23 May 2013)

We establish a framework to investigate the local differences of two multivariate data samples, as measured
by a statistically significant two-sample test. This framework identifies the locally significant difference
regions by computing local test statistics based on the squared difference of two kernel density estimators.
The key differences between the data samples are concentrated in these significantly different regions. We
illustrate the visualisation and interpretation of local significant differences for simulated data, and their
potential in the role of biomarker discovery for biological/biomedical data.
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1. Introduction

In the context of two-sample testing, the classical t-test compares the location of two population
means. There has been much interest in generalising this test. Amongst the most widely known
nonparametric tests for one-dimensional continuous data are the Kolmogorov–Smirnov, Wald–
Wolfowitz and Mann–Whitney tests (see the monograph of Gibbons and Chakraborti 2003).
Approaches developed by Bickel (1969), Friedman and Rafsky (1979) and Liu and Singh (1993)
generalise these to multivariate data. Though generally, these have not been met with the same
wide acceptance as their univariate antecedents.

Since the t-test is a comparison of the two normal density functions with a common variance,
it is plausible that a testing procedure based on more general density estimators will be more
flexible. The generalisation to normal densities with unequal variances (the so-called Behrens–
Fisher problem) has been provided by Nel and van der Merwe (1986). Generalising this idea further
by replacing a parametric density with a nonparametric density estimator has lead to a vast body of
work which we do not attempt to review comprehensively here. Since we propose a kernel density
estimator-based method, we cite only a few references for tests based on these: the L2 discrepancy
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between density functions ofAnderson, Hall and Titterington (1994), the empirical likelihood ratio
test statistic of Cao and Van Keilegom (2006), the L2 discrepancy between characteristic functions
of Alba Fernández, Jiménez Gamero and Muñoz García (2008), the common area test statistic
of Martínez-Camblor, De Uña-Álvarez and Corral (2008) and the density ratio/relative density
approach of Molanes-Loṕez and Cao (2008). We take as our starting point the L2 discrepancy
of Anderson et al. (1994) due to its amenability for mathematical analysis. In this sub-class,
subsequent contributions include Li (1999), Baringhaus and Franz (2004), Borgwardt et al. (2006)
and Duong, Goud and Schauer (2012). We adopt the approach of Duong et al. (2012) which,
unlike the much of the preceding work, relies on the asymptotic results to compute the sampling
distribution of the test statistic, rather than on resampling methods. These authors believe that
the reliance on resampling schemes inhibited the wider user of kernel-based testing, outside
the statistical computing community, and especially amongst experimental scientists. From a
mathematical point of view, asymptotic methods provide insight into the behaviour of the test
statistic which is not always apparent from finite sample resampling, for example, the role of the
smoothing parameters.

Nonparametric density estimates typically allow good estimation over the sample space. When
they are used in a two-sample comparison, they are usually condensed into a global criterion,
for example, via integration or various norms, leading to a single binary decision whether the
two density estimates are equal or not as evaluated over the sample space. This type of global
binary result can leave much of the local structure concealed. In this manuscript, we examine
the problem of finding the regions of the sample space where the two data sets are the locally
most different. In a chi-squared test of the homogeneity of two samples, if an overall statistically
significant result is obtained, then post hoc tests can be applied to the sample counts within each
partition class to establish which of these are main contributors to overall statistical significance
(see Cox and Key 1993). Applying these post hoc chi-squared tests to determine the significantly
different partition classes of discretised density functions was first posited by Roederer and Hardy
(2001) and recently refined by Duong, Koch and Wand (2009). The novelty we introduce is to use
smooth kernel density estimates in place of discretised density estimates, to take advantage of the
well-known statistical properties of the latter over the former (see Scott 1992; Simonoff 1996 for
an overview). The analysis of the global difference of the kernel density estimates was examined
in Hall and Wand (1988) for discriminant analysis. Sugiyama et al. (2012) and references therein
provide a review of recent developments of density differences in other situations. We extend the
analysis of density differences to a local inferential framework.

In Section 2, we generalise the global hypothesis testing framework to local squared differences
and provide an algorithm to construct locally significantly different regions where the sample
densities are most different. In the last section, we provide graphical visualisations and simulation
studies of these locally significantly different regions on simulated and real data.

2. Local significant difference regions

To test the null hypothesis of global equality H0 : f1 ≡ f2 of two density functions f1 and f2,
we require a discrepancy measure between the two density functions. The Lp norm is a popular
candidate, with L1, L2 and L∞ the most commonly used.Allen (1997), Louani (2000) and Biau and
Györfi (2005) examine the L1 case, with the latter also concerned with the L∞ supremum norm,
whereas Anderson et al. (1994) investigate an L2 criterion T ≡ T(f1, f2) = ∫

Rd [f1(x) − f2(x)]2 dx.
It is shown by Duong et al. (2012) that a direct plug-in estimator for the global test statistic T of
the form

∫
Rd [f̂1(x) − f̂2(x)]2 dx is undesirable since it (a) requires numerical integration and (b)

lacks closed-form distributional results. On the other hand, it is useful to consider a plug-in local
test statistic.
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Let {X1, X2, . . . , Xn1} and {Y1,Y2, . . . ,Yn2} be d-variate random samples from their respective
common densities f1 and f2. The kernel density estimates of f1 and f2 are

f̂1(x; H1) = n−1
1

n1∑

i=1

KH1(x − Xi), f̂2(x; H2) = n−1
2

n2∑

j=1

KH2(x − Y j),

where K is the kernel function with KH�
(x) = |H�|−1/2K(H−1/2

� x) and H� is a bandwidth matrix,
for � = 1, 2. At a non-random point x, we consider the local hypothesis H0(x) : f1(x) = f2(x)

using the analogous local test statistic Û(x) = [f̂1(x; H1) − f̂2(x; H2)]2. Investigating local differ-
ences between multivariate data point clouds in terms of the difference of density functions was
suggested by Duong et al. (2009) who applied chi-squared test to discretised data. Our proposed
test bypasses this discretisation, thus avoiding any source of inaccuracy induced here. The key
result of our testing procedure is the asymptotic chi-squared distribution of Û(x), presented in
the following theorem.

Theorem 2.1 Suppose that the following conditions hold. For � = 1, 2,

(F) the target densities f� are bounded and continuous;
(H) the bandwidths H� = H�(n�) are a sequence of symmetric positive definite matrices such that

all elements of H� → 0 and n−1
� |H�|−1/2 → 0 as n� → ∞;

(K) the kernel K is a symmetric, square integrable probability density function and such that∫
Rd xxTK(x) dx = m2(K)Id for some real number m2(K) and Id is the d × d identity matrix,

and R(K) = ∫
Rd K(x)2 dx.

Further suppose that local null hypothesis H0(x) : f1(x) = f2(x) = f (x) holds for a non-random
point x. Then,

σ−2
U (x)Û(x)

d→ χ2
1 ,

where σ 2
U(x) = (n−1

1 |H1|−1/2 + n−1
2 |H1|−1/2)R(K)f (x) and χ2

1 is a chi-squared distribution with
1 degree of freedom.

Proof The classical result of Parzen (1962), relying on that kernel density estimators are local
means, shows their asymptotic normality via appropriate central limit theorems. Thus, we can write

that [n−1
� |H�|−1/2R(K)f�(x)]−1/2[f̂�(x; H�) − f�(x)] d→ N(0, 1), as n� → ∞, using expressions for

the mean and variance of f̂� from Wand (1992). Under the null hypothesis f1(x) = f2(x) = f (x),
the difference Û1/2 = f̂1 − f̂2 follows

[(n−1
1 |H1|−1/2 + n−1

2 |H2|−1/2)R(K)f (x)]−1/2Û(x)1/2 d→ N(0, 1). �

The remaining unknown in the asymptotic formula is the parameter σ 2
U . The bandwidth matrices

are consistently estimated using the plug-in selectors Ĥ1, Ĥ2 of Duong and Hazelton (2003). Then,
σ̂ 2

U(x) = R(K)[n−1
1 |Ĥ1|−1/2 f̂1(x; Ĥ1) + n−1

2 |Ĥ2|−1/2 f̂2(x; Ĥ2)].
What is left is the adjustment for multiple correlated testing. We adapt the approach used

by Duong, Cowling, Koch and Wand (2008) in the context of one-sample significance testing,
relying on the Hochberg (1988) adjustment to control the family-wise level of significance α.
Our proposed algorithm to find locally different regions based on the set of local hypothesis tests
{H0(x) : f1(x) = f2(x), x ∈ R

d} is as follows:

(1) For all estimation points xj, j = 1, . . . , m, compute the test statistic X2
j = σ̂−2

U (xj)Û(xj)
2 and

the corresponding p-value Pj = P(X2
j ≥ χ2

1 ). A common choice of the estimation points is a
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fixed uniform grid of points, for example, (d, m) = (1, 401), (2, 1512), (3, 513) as typical grid
sizes used in kernel density estimation (Wand 1994).

(2) Apply the Hochberg (1988) multiple adjustment to these m local hypothesis tests. Sort these p-
values into ascending order P(1), . . . , P(m). Define j∗ = argmax1≤j≤m{P(j) ≤ α/(m − j + 1)}.
The rejection region is {xj : P(j) ≤ j∗, 1 ≤ j ≤ m}.

(3) For all points xj in the rejection region,
(a) if f̂1(xj; H1) > f̂2(xj; H2), then conclude that f1(xj) > f2(xj);
(b) if f̂1(xj; H1) < f̂2(xj; H2), then conclude that f1(xj) < f2(xj).

3. Numerical study

3.1. Bivariate simulated data

For a simulation study, we compare pairs of bivariate mixture normal densities, taken from
Duong et al. (2012) as a testing ground for the finite sample performance of our pro-
posed test. The first pair N((−1/2, 0), I2) and N((1/2, 0), I2) are two single normal den-
sities with identity variance and whose means are separated by a distance of 1, so this
can be treated as a base case. Pair #2 are both bimodal densities, 1/2N((1, −1), �) +
1/2N((−1, 1), �) and 1/2N((1, −1), �) + 1/2N((−1, 1), I2) where � = [4/9 4/15; 4/15 4/9].
The lower right components are almost the same but the upper left components are
different so this is potentially a challenging case to distinguish between two finite sam-
ples. Both densities in pair #3, N((0, 0), I2) and 1/2N((0, 0), I2) + 1/10N((0, 0), 1/16I2) +
1/10N((−1, −1), 1/16I2) + 1/10N((−1, 1), 1/16I2) + 1/10N((1, −1), 1/16I2) + 1/10N((1, 1),
1/16I2), have (approximately) zero mean and identity variance, though with different internal
structure, so would most likely benefit from a density-based test. The contour plots and difference
regions of these test densities are displayed in Figure 1. Our aim is not to estimate these entire
difference regions, but the most influential subsets of them.

For each pair, we take two random samples of size n = n1 = n2 = 1000 and 10, 000 from
density #1, and two random samples from each of density #1 and density #2. We compute the
kernel-based global p-values and locally significantly different regions, using the functionality
provided in the ks library (Duong 2007) in the R statistical programming language.

For the locally significant regions, we fix the level of significance at α = 0.05. In Figure 2,
the dark grey region is where density #2 is significantly greater than density #1, light grey is
where density #1 is significantly greater density #2 and otherwise is where the densities are equal.
As expected, the regions are uniformly larger for the larger sample size. For Pair #1, the locally
significant regions are centred around the modes of the two individual densities. For Pair #2, for
n = 1000 only small locally significant regions appear, whereas for n = 10, 000, these regions
more clearly show the differences in the upper left modes. For Pair #3, the dark grey regions are
more compactly delimited than the light grey regions, indicating that for this pair, it is easier to
distinguish where density #2 is more abundant at its five local modes than vice versa.

In Figure 2, for comparison, we computed the locally significant regions based on the method of
Duong et al. (2009) who used the PRIM (Patient Induction Rule Method) to partition the data sets
for a chi-squared test. First, the sample of density #1 are labelled 1, and density #2 are labelled −1.
The PRIM algorithm builds rectangular regions where the sample mean of the labels exceeds given
thresholds, which are 0.3 and −0.3 in our case, based on thresholds computed by a data-based
algorithm provided by Duong et al. (2009). The minimum size of the rectangles is set to be 5%
of the combined sample size for n = 1000 and 2.5% for n = 10, 000. The algorithm searches
for rectangles where one density tends to outnumber the other. Compared to the kernel-based
difference regions, PRIM regions are located in the same general area of the sample space, but
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Figure 1. Bivariate target density pairs. The first row are contour plots. Dashed lines: density #1. Solid lines: density #2.
In the second row, the difference regions are coloured as follows: light grey: density #1 > density #2; dark grey: density
#1 < density #2.

the latter, due to their rectangular construction, do not follow the structure of the data as the
former. The PRIM algorithm results in some dark grey regions in the lower right corner which
are spuriously significant since visual inspection of the true densities indicates little difference
between the two densities. Thus, kernel-based difference regions are preferred here.

To check the performance of Hochberg’s (1988) procedure to control Type I and Type II errors
for finite samples, we compare the samples drawn from the second density in each of the target
density pairs, providing a range of density shapes, for a nominal level of significance of α = 0.05.
The first sample is drawn from the density, and the second sample is drawn from the same density
translated by μ in the x-axis, for μ = 0.0, 0.1, . . . , 0.8. For the sample sizes n = 1000, 10, 000,
we calculate the any power rate, that is, the proportion of the N = 100 trials where at least one x
in the grid defined on [−3, 3] × [−3, 3] leads to a rejection of the local null hypothesis H0(x). For
μ = 0, this gives an empirical estimate of the level of significance α̂. Hochberg’s (1988) procedure
guarantees a family-wise error rate at all testing points to be no greater than α rather than exactly
α so our results α̂ = 0.00 for all cases, except α̂ = 0.02 for Pair #2, n = 10, 000, are consistent
with this. This is the first column in Table 1. These furthermore indicate that the proposed testing
procedure is more conservative than indicated by the nominal level of significance α = 0.05. In the
remaining columns, we examine the case where the alternative hypothesis (μ = 0.1, 0.2, . . . , 0.8)

holds to compute the estimated powers of the test 1 − β̂. For n = 1000, the test has low power
until a higher value of μ, whereas for n = 10, 000, the test correctly rejects the null hypothesis
for a smaller separation μ.

Another important property is the behaviour of the estimated level of significance and any power
rate of the test as functions of the bandwidth. To verify these, we take the case of comparing samples
from the second density from the target density pairs against the same density, and against the
same density translated by (0.6, 0) as this separation of two normal mixture distributions leads to
excellent power, so it will allow us to examine how the power changes as the bandwidth changes.
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Figure 2. Comparison of kernel-based and PRIM-based locally significant difference regions, at α = 0.05 level of
significance, for bivariate target density pairs, at sample sizes n = 1000, 10, 000. The difference regions are coloured as
follows: light grey, density #1 > density #2; white, density #1 = density #2; dark grey, density #1 < density #2.

In Table 2, the fifth column (γ = 1.0) is the base case with the data-based optimal bandwidths
Ĥ1, Ĥ2. The other columns are the level of significance and power of the tests carried on the
same sample data with the bandwidths Ĥγ

1 , Ĥγ

2 , γ = −1.0, −0.5, 0.0, 0.5, 1.5, 2.0, 2.5, 3.0. Since
|Ĥ1|, |Ĥ2| < 1, then using γ > 1 leads to undersmoothing, and γ < 1 leads to oversmoothing.



Journal of Nonparametric Statistics 641

Table 1. Empirical level of significance and any power rate for the comparison of samples from the second density from
the target density pairs against the same density translated by (μ, 0), for a nominal level of significance α = 0.05.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Separation (μ) α̂ 1 − β̂

Pair #1
n = 1000 0.00 0.00 0.03 0.09 0.46 0.84 1.00 1.00 1.00
n = 10, 000 0.00 0.07 0.97 1.00 1.00 1.00 1.00 1.00 1.00

Pair #2
n = 1000 0.00 0.00 0.10 0.79 1.00 1.00 1.00 1.00 1.00
n = 10, 000 0.02 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pair #3
n = 1000 0.00 0.00 0.34 0.97 1.00 1.00 1.00 1.00 1.00
n = 10, 000 0.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Notes: The two sample sizes considered are n = 1000, 10, 000. The first column with μ = 0 gives the estimated level of significance α̂ and
the remaining columns with μ > 0 give the estimated any power rate (1 − β̂) for these alternative hypotheses.

Table 2. Empirical level of significance and any power rate, as functions of varying bandwidths for a nominal level of
significance α = 0.05.

Bandwidth exponent (γ ) −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Level of significance (α̂)
Pair #1

n = 1000 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n = 10, 000 0.32 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Pair #2
n = 1000 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n = 10, 000 0.36 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00

Pair #3
n = 1000 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
n = 10, 000 0.42 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Power (1 − β̂)
Pair #1

n = 1000 0.13 1.00 1.00 1.00 1.00 0.46 0.00 0.00 0.00
n = 10, 000 0.35 1.00 1.00 1.00 1.00 1.00 0.81 0.00 0.00

Pair #2
n = 1000 0.12 1.00 1.00 1.00 1.00 1.00 0.01 0.00 0.00
n = 10, 000 0.30 1.00 1.00 1.00 1.00 1.00 0.33 0.00 0.00

Pair #3
n = 1000 0.22 1.00 1.00 1.00 1.00 0.98 0.00 0.00 0.00
n = 10, 000 0.41 0.02 1.00 1.00 1.00 1.00 0.00 0.00 0.00

Notes: Each entry in the upper half is the estimated level of significance α̂, for the comparison of samples from the second density from
the target density pairs against the same density. Each entry in the lower half is the estimated any power rate (1 − β̂), for the comparison
of samples from the second density from the target density pairs against the same density translated by (0.6, 0). The two sample sizes
considered are n = 1000, 10, 000. The fifth column (γ = 1.0) is the base case with the optimal bandwidths Ĥ1, Ĥ2. The other columns are
with the bandwidths Ĥγ

1 , Ĥγ

2 . Since |Ĥ1|, |Ĥ2| < 1, then using γ > 1 leads to undersmoothing and γ < 1 leads to oversmoothing.

In the upper half of Table 2, for γ = 1, 1.5, the bandwidths Ĥγ

1 , Ĥγ

2 exhibit the closest empirical
levels of significance to the nominal level α = 0.05. Though we note that for all γ > −1, the
empirical levels are less than 0.05, indicating that undersmoothing and mild oversmoothing do
not over-estimate the level of significance. Only for the highly oversmoothed case (γ = −1) do
the empirical levels exceed the nominal level. In the lower half of Table 2, for γ = 0, 0.5, 1, 1.5,
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the bandwidths Ĥγ

1 , Ĥγ

2 exhibit good power. It appears that moderate under- or oversmoothing
does not affect power, though the highly undersmoothed γ = 2, 2.5, 3 and oversmoothed cases
γ = −1, −0.5 result in poor power performance. We recall that the optimal bandwidths used here
are computed according to Duong and Hazelton (2003) and minimise the squared error for density
estimation, which does not necessarily imply that they would be optimal for local significance
testing. Fortuitously, these bandwidth matrices are contained in a range of bandwidth matrices
which yield good empirical level of significance and power properties.

3.2. Univariate simulated data

The theory presented in the previous section is not restricted to only multivariate data. Upon
inspection, it is straightforward to simplify these multivariate results to univariate data. To verify
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Figure 3. Comparison of kernel-based and PRIM-based locally significant difference regions, at α = 0.05 level of
significance, for univariate target density pairs at sample sizes n = 100, 1000. The first row are contour plots for the target
density pairs. Dashed lines: density #1. Solid lines: density #2. In the subsequent rows, the true density differences are
the solid lines, and the estimated density differences are the dashed lines. The difference regions (horizontal bars on the
horizontal axis) are coloured as follows: light grey, density #1 > density #2; white, density #1 = density #2; dark grey,
density #1 < density #2.
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the finite sample behaviour, we have taken one-dimensional versions of the bivariate density
pairs which we considered earlier. Pair #1 is N(0, 1/2) versus N(1/2, 1/2), two normal shifted
densities. Pair #2 is 1/2N(1/2, 1/2) + 1/2N(−1, 1/2) versus 1/2N(1/2, 1/2) + 1/2N(−1, 1/3),
two bimodal densities with one similar component and one differing component. Pair #3 is N(0, 1)

versus 1/2N(0, 1) + 1/4N(1, 1/4) + 1/4N(−1, 1/4) which have (approximately) overall zero
mean and unit variance but with different internal structure. The plots of these density pairs are
given in the first row of Figure 3. For sample sizes n = 100, 1000, in the subsequent two rows
are the true density differences f1 − f2 (solid lines) and the estimated density differences f̂1 − f̂2
(dashed lines). The local difference regions are plotted as a rug-like plot: the intervals on the
x-axis are coloured in light grey for f̂1 > f̂2 and dark grey for f̂1 < f̂2. Overall, we deduce that
whilst n = 100 is sufficient for reasonable density estimation, it is not sufficient in these cases to
estimate reliably local significant difference regions. Therefore, focusing on the latter sample size
n = 1000, we see that the local significant regions correspond closely to local extrema (peaks and
valleys) in the individual densities, as expected. We note that they also appear in the ‘shoulders’
of the densities where there are no local extrema, for example, the leftmost light grey regions for
pairs #2 and #3 where large differences in probability mass are present.

3.3. Multivariate real data

There is vast interest in the identification of biomarkers in biological/biomedical data.A biomarker
is the characteristic signature of a disease, mutation, effect of drug treatments, etc. which dis-
tinguishes it from the control sample. A commonly used technology for biomarker discovery is
flow cytometry where the fluorescence properties of marker proteins inside cells are measured.

Figure 4. GvHD (graft-versus-host disease) biomarker discovery for (CD3, CD8) flow cytometry fluorescence mea-
surements. Left: scatter plot for a control patient. Centre: scatter plot for a GvHD patient. Right: The α = 0.05 local
difference regions where GvHD patient levels are significantly higher. In the upper right difference regions (circled) of
elevated levels of all (CD3, CD4, CD8) antibodies is a potential biomarker for the disease.
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These marker proteins are proxies for the presence of specific cellular structures. We take the
measurements from a control patient and a patient with GvHD (graft-versus-host disease), 32
days after each patient received a bone marrow transplant. GvHD occurs when the immune cells
in the grafted bone marrow begin to attack the tissues in the host recipient. Since CD3, CD4 and
CD8 are marker proteins associated with immune responses, they are good candidates to be GvHD
biomarkers. As is usual in flow cytometry data analysis, the fluorescence levels are transformed
using an inverse hyperbolic sine and pre-processed to remove the measurements from dead cells.
This leaves a control patient sample consisting of n1 = 7566 cells and a GvHD patient sample
of n2 = 10, 142 cells. A different version of this data set has been already analysed in Chacón,
Duong and Wand (2011), who in turn received the data originally from Brinkman et al. (2007).
In Figure 4, on the left is the scatter plot of a subsample of 1000 cells from a control patient and
in the centre that from a GvHD patient. On the right are the locally significant difference regions.
The most interesting region for biomarker discovery is in the upper right (as indicated by the
circle) since it is isolated from the ‘main’ sample. This indicates a relative enrichment of all CD3,
CD4 and CD8 antibodies levels concurrently in a GvHD patient with respect to a control patient.
This concurrent enrichment in CD3, CD4 and CD8 is a potential biomarker for GvHD. In the
long term, drugs which block the action of CD3, CD4 and CD8 could thus potentially play a role
in treating this disease.

Acknowledgements

The author acknowledges the financial support from grants at the Curie Institute, Paris, France, and the Institute of
Translational Neurosciences (IHU-A-ICM WP2), Paris, France.

References

Alba Fernández, V., Jiménez Gamero, M.D., and Muñoz García, J. (2008), ‘A Test for the Two-Sample Problem Based
on Empirical Characteristic Functions’, Computational Statistics and Data Analysis, 52, 3730–3748.

Allen, D.L. (1997), ‘Hypothesis Testing Using an L1-Distance Bootstrap’, American Statistician, 51, 145–150.
Anderson, N.H., Hall, P., and Titterington, D.M. (1994), ‘Two-Sample Test Statistics for Measuring Discrepancies Between

Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates’, Journal of Multivariate
Analysis, 50, 41–54.

Baringhaus, L., and Franz, C. (2004), ‘On a New Multivariate Two-Sample Test’, Journal of Multivariate Analysis,
88, 190–206.

Biau, G., and Györfi, L. (2005), ‘On the Asymptotic Properties of a Nonparametric L1-Test Statistic of Homogeneity’,
IEEE Transactions on Information Theory, 51, 3965–3973.

Bickel, P.J. (1969), ‘A Distribution Free Version of the Smirnov Two-Sample Test in the p-Variate Case’, Annals of
Mathematics Statistics, 40, 1–23.

Borgwardt, K., Gretton, A., Rasch, M., Kriegel, H.P., Schölkopf, B., and Smola, A. (2006), ‘Integrating Structured
Biological Data by Kernel Maximum Mean Discrepancy’, Bioinformatics, 51, 49–57.

Brinkman, R.R., Gasparetto, M., Lee, S.-J.J., Ribickas, A.J., Perkins, J., Janssen, W., Smiley, R., and Smith, C. (2007),
‘High-Content Flow Cytometry and Temporal Data Analysis for Defining a Cellular Signature Graft-Versus-Host
Disease’, Biology of Blood and Marrow Transplantation, 13, 691–700.

Cao, R., and Van Keilegom, I. (2006), ‘Empirical Likelihood Ratio Tests for Two-Sample Problems via Non-Parametric
Density Estimation’, Canadian Journal of Statistics, 34, 61–77.

Chacón, J.E., Duong, T., and Wand, M.P. (2011), ‘Asymptotics for General Multivariate Kernel Density Derivative
Estimators’, Statistica Sinica, 21, 807–840.

Cox, M.K., and Key, C.H. (1993), ‘Post hoc Pair-Wise Comparisons for the Chi-Square Test of Homogeneity of
Proportions’, Educational and Psychological Measurement, 53, 951–962.

Duong, T. (2007), ‘ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R’, Journal
of Statistical Software, 21(7), 1–16.

Duong, T., and Hazelton, M.L. (2003), ‘Plug-in Bandwidth Matrices for Bivariate Kernel Density Estimation’, Journal
of Nonparametric Statistics, 15, 17–30.

Duong, T., Cowling, A., Koch, I., and Wand, M.P. (2008), ‘Feature Significance for Multivariate Kernel Density
Estimation’, Computational Statistics and Data Analysis, 52, 4225–4242.

Duong, T., Koch, I., and Wand, M.P. (2009), ‘Highest Density Difference Region Estimation with Application to Flow
Cytometric Data’, Biometrical Journal, 51, 504–521.



Journal of Nonparametric Statistics 645

Duong, T., Goud, B., and Schauer, K. (2012), ‘First Closed-Form Density-Based Framework for Automatic Detection of
Cellular Morphology Changes’, Proceedings of the National Academy of Sciences, 109, 8382–8387.

Friedman, J.H., and Rafsky, L.C. (1979), ‘Multivariate Generalizations of the Wald–Wolfowitz and Smirnov 2-Sample
Tests’, Annals of Statistics, 7, 697–717.

Gibbons, J.D., and Chakraborti, S. (2003), Nonparametric Statistical Inference (4th ed.), New York: Marcel Dekker.
Hall, P., and Wand, M.P. (1988), ‘On Nonparametric Discrimination Using Density Differences’, Biometrika, 75, 541–547.
Hochberg, Y. (1988), ‘A Sharper Bonferroni Procedure for Multiple Tests of Significance’, Biometrika, 75, 800–802.
Li, Q. (1999), ‘Nonparametric Testing the Similarity of Two Unknown Density Functions: Local Power and Bootstrap

Analysis’, Journal of Nonparametric Statistics, 11, 189–213.
Liu, R.Y., and Singh, K. (1993), ‘A Quality Index Based on Data Depth and Multivariate Rank-Tests’, Journal of the

American Statistical Association, 88, 252–260.
Louani, D. (2000), ‘Exact Bahadur Efficiencies for Two-Sample Statistics in Functional Density Estimation’, Statistics

& Decisions, 18, 389–412.
Martínez-Camblor, P., De Uña-Álvarez, J., and Corral, N. (2008), ‘k-Sample Test Based on the Common Area of Kernel

Density Estimators’, Journal of Statistical Planning and Inference, 138, 4006–4020.
Molanes-López, E.M., and Cao, R. (2008), ‘Plug-in Bandwidth Selector for the Kernel Relative Density Estimator’,

Annals of the Institute of Statistical Mathematics, 60, 273–300.
Nel, D.G., and van der Merwe, C.A. (1986), ‘A Solution to the Multivariate Behrens–Fisher Problem’, Communications

in Statistics. A. Theory and Methods, 15, 3719–3735.
Parzen, E. (1962), ‘On Estimation of a Probability Density Function and Mode’, Annals of Mathematical Statistics,

33, 1065–1076.
Roederer, M., and Hardy, R.R. (2001), ‘Frequency Difference Gating: A Multivariate Method for Identifying Subsets That

Differ Between Samples’, Cytometry A, 45, 56–64.
Scott, D.W. (1992), Multivariate Density Estimation: Theory, Practice, and Visualization, New York: John Wiley & Sons

Inc.
Simonoff, J.S. (1996), Smoothing Methods in Statistics, New York: Springer-Verlag.
Sugiyama, M., Kanamori, T., Suzuki, T., du Plessis, M.C., Liu, S., and Takeuchi, I. (2012), ‘Density-Difference Estimation’,

Advances in Neural Information Processing Systems, 25, 692–700.
Wand, M.P. (1992), ‘Error Analysis for General Multivariate Kernel Estimators’, Journal of Nonparametric Statistics,

2, 1–15.
Wand, M.P. (1994), ‘Fast Computation of Multivariate Kernel Estimators’, Journal of Computational and Graphical

Statistics, 3, 433–445.


	Introduction
	Local significant difference regions
	Numerical study
	Bivariate simulated data
	Univariate simulated data
	Multivariate real data




