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a b s t r a c t

A unified framework to analyse multivariate kernel estimators of distribution and survival
functions is introduced, before turning our attention to receiver operating characteristic
(ROC) curves. These are well-established visual analytic tools for univariate data samples,
though their generalisation to multivariate data has been limited. Since non-parametric
multivariate kernel smoothing methods possess excellent visualisation properties, they
serve as a solid basis for their estimation. With optimal data-based bandwidth matrix se-
lectors, we demonstrate that they possess suitable properties for exploratory data analysis
of simulated and experimental data.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

A basic problem in multivariate data analysis is estimating cumulative distribution functions, though there has been a
relative paucity of their analysis as compared to density functions. The former are however important in a wide range of
data analytic situations. We set up a unified framework to treat kernel estimators of the multivariate distribution functions
and the closely related survival functions, since kernel estimators are widely used in non-parametric data smoothing, see
Simonoff (1996) andWand and Jones (1995) for an overview. Let X = (X1, X2, . . . , Xd) ∈ Rd be a d-variate random variable
with distribution F and density f . Let x = (x1, x2, . . . , xd), then we define the cumulative distribution of X to be

F(x) = P(X ≤ x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd) =

 x

−∞

f (w) dw

where
 x
−∞

dw is an abbreviation of
 x1
−∞

· · ·
 xd
−∞

dw1 · · · dwd. The survival function is defined as F̄(x) = P(X > x),
complementary to the cumulative distribution function F(x) = P(X ≤ x). The usual relation F̄(x) = 1− F(x) for univariate
data does not hold for multivariate data since the hyper-rectangles {w ∈ Rd

: w ≤ x} ∪ {w ∈ Rd
: w > x} ≠ Rd in general.

These functions are brought together in the analysis of receiver operating characteristic (ROC) curves. ROC curves were
introduced in the context of signal detection, e.g. Peterson, Birdsall, and Fox (1954), though they have been subsequently
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Fig. 1. Scatterplots for Spinal Muscular Atrophy (SMA) data set. The variables are the negative log concentrations (µM) of Glycine (Gly), L-glutamic (L-Glu)
and 1-methyl-L-histidine (methyl L-Hist). (Left) Scatterplot for 22 age-matched healthy control children. (Right) Scatterplot for 108 SMA afflicted children.

widely adopted in many different contexts, whenever the values of a second population tend to be greater than those from
the first one. The standard definition of ROC curves allows only for scalar valued diagnostic variables whereas the ability
to handle multivariate data would be beneficial in many circumstances. Following Handcock and Morris (1998), Hsieh and
Turnbull (1996) and Lloyd (1998), instead of comparing the vector of diagnostic variables to a threshold component-wise
directly, we apply the survival function F̄X1 from the first population as a pre-transformation. This leads to us to define a
multivariate ROC curve as the graph

{(P(F̄X1(X1) > F̄X1(x)), P(F̄X1(X2) > F̄X1(x))) : x ∈ Rd
}.

We use this definition rather than the seemingly more straightforward generalisation from the univariate case {(P(X1 >
x), P(X2 > x)) : x ∈ Rd

} which is not a well-defined multivariate function, whereas the above ROC curve is monotonic by
construction since it is a quantile–quantile plot. This approach is an alternative to current methods such as the dimension
reduction via a weighted vector norm of Pepe and Thompson (2000) and Su and Liu (1993) or the singular value decompo-
sition combined with likelihood ratios of Pfeiffer and Bura (2008); or the logistic regression modelling of Pepe (1998). The
reader interested in amore comprehensive review is invited to consult Shapiro (1999) and the references contained therein.
One of the main advantages of our proposed approach is that it does not require parametric assumptions on the underlying
random variables or on the transformation, and so is an ideal candidate within a non-parametric smoothing framework.

A data set for which a multivariate ROC curve analysis would be beneficial is the Pilot Study of Biomarkers for Spinal
Muscular Atrophy (BforSMA), available from http://neuinfo.org/smabiomarkers. The full database contains a large variety
of measurements taken from a cohort of 130 children aged between 2 and 12 years, with 108 children with genetically
confirmed Spinal Muscular Atrophy (SMA) and 22 aged-matched healthy controls. We take a subset of these data identified
in Finkel et al. (2012), as potential biomarkers for SMA, namely the (negative log) concentrations of the amino acids Glycine
(Gly), L-glutamic (L-Glu) and 1-methyl-L-histidine (methyl L-Hist). The 3-dimensional scatterplots in Fig. 1 give a visual
impression that the point cloud of SMA patients have generally higher biomarker values than the control patients, and a
ROC curve analysis would visualise and quantify the joint diagnostic efficacy of this biomarker combination.

Our goal is to develop fully multivariate kernel estimators of ROC curves the construction of the ROC curve via a novel
combination of kernel estimators of cumulative distribution and survival functions. In Section 2, we set up a framework
for the squared error analysis of kernel estimators of multivariate cumulative distribution and survival functions, and most
crucially the development of data-based optimal bandwidth selectors. This supporting section is the basis for the data-based
implementation for the estimators of ROC curves in Section 3. In Section 4, we demonstrate the efficacy of these kernel
estimators for simulated and experimental data. The last section is a discussion, and Appendix contains the mathematical
proofs of the results stated in the main text.

2. Cumulative distribution and survival functions

In this section, we introduce a class of plug-in estimators of the cumulative distribution and survival functions. The usual
kernel estimator of the cumulative distribution function F is

F̂(x; H) = n−1
n

i=1

KH(x − Xi) (1)

where K(x) =
 x
−∞

K(w) dw for a multivariate kernel function K , the scaled integrated kernel is KH(x) = K(H−1/2x) = x
−∞

|H|
−1/2K(H−1/2w) dw, andH is the bandwidthmatrix. This form as the integral of the classical kernel density estimator

http://neuinfo.org/smabiomarkers
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was proposed byWatson and Leadbetter (1964) in the framework of hazard function estimation. Subsequent analysis in the
univariate case of these kernel distribution estimators in their own right includes Azzalini (1981), Nadaraya (1964), Winter
(1973) and Yamato (1973), withMolanes-López and Cao (2008) considering data-based selection of the bandwidth. The first
appearance of multivariate kernel distribution estimators is Jin and Shao (1999) who considered the bandwidth matrix as
a scalar multiple of the identity matrix. This was later extended to diagonal bandwidth matrices by Liu and Yang (2008).
Eq. (1) contains the most general form of a fixed bandwidth kernel estimator since H is allowed to be any positive definite
symmetric d × d matrix, which we call an unconstrained bandwidth matrix. The novel contribution in this section is the
development of data-based selectors of these unconstrained matrices.

The kernel estimator of the survival function is analogously defined as

ˆ̄F(x; H) = n−1
n

i=1

K̄H(x − Xi) = n−1
n

i=1

KH(Xi − x) (2)

where K̄(x) =


∞

x K(w) dw =


−x
−∞

K(w) dw = K(−x) for K a symmetric kernel. The construction of ˆ̄F involves the
reversal of the difference x − Xi in F̂ , so many of the properties of the latter are correspondingly transferred so we focus on
developing theoretical arguments on the former.

The results in this paper rely on the following assumptions. They do not form aminimal set, but they serve as convenient
starting point to develop our understanding of these kernel estimators.

(A1) For the distribution function F , all partial derivatives up to order 2 are bounded, continuous and square integrable, and
of order 4 exist; and F does not depend on n.

(A2) The kernel K is a positive, symmetric, square integrable density function such that


Rd xxTK(x) dx = m2(K)Id for some
real numberm2(K)with Id the d × d identity matrix.

(A3) The integrated kernel K is such thatm1(KK) =


Rd xK(x)K(x) dx has a finite L2 norm.
(A4) The bandwidth matrix H = H(n) forms a sequence of symmetric and positive-definite matrices such that every

element of H → 0 as n → ∞.

Theorem 1. Suppose that the conditions (A1)–(A4) hold. As n → ∞, the mean integrated squared error (MISE) is

MISE F̂(·; H) =


Rd

MSE F̂(x; H) dx = {AMISE F̂(·; H)}{1 + o(1)}

where the asymptotic MISE is

AMISE F̂(·; H) = n−1V1(F)− 2n−1m1(KK)T H1/21d −
1
4m2(K)2(vecT H2)ψ2,

V1(F) =


Rd F(x)(1 − F(x)) dx, ψ2 =


Rd vecD2f (x)f (x) dx, D2 is the Hessian matrix operator of second order mixed partial

differentials, and 1d is the d-vector of all ones. Equivalent expressions for the survival function estimator are obtained where ˆ̄F , F̄
replace F̂ , F .

As already indicated by various authors, e.g. Azzalini (1981) and Reiss (1981), the asymptotic variance of F̂ is n−1V1(F)−
2n−1m1(KK)T H1/21d which is smaller than the variance of the empirical cumulative distribution estimator, n−1V1(F), as
m1(KK)T H1/21d > 0 since K is a non-negative density function.

As is usual for kernel estimators, the selection of the bandwidth is an important factor in their performance. For the
AMISE from Theorem 1, we observe that letting H to be large leads to decreasing variance, though at the expense of inflat-
ing the squared bias, recalling that (vecT H2)ψ2 < 0. This is usually known as oversmoothing. On the other hand, letting
H to be small leads to decreasing bias with correspondingly inflated variance, which is typical of undersmoothing. An op-
timal selector is a bandwidth which finds a trade-off between under- and over-smoothing: the oracle optimal selector is
HMISE = argminH∈F MISE F̂(·; H)where F is the space of all positive definite symmetric d × d matrices.

Theorem 2. Suppose that conditions (A1)–(A4) hold. As n → ∞, the oracle optimal bandwidth matrix HMISE = O(n−2/3)Jd
where Jd is the d × d matrix of all ones. The minimal MISE is infH∈F MISE [F̂(·; H)] = n−1V1(F)+ O(n−4/3).

This order of HMISE agrees with univariate results for the unweighted MISE of Azzalini (1981) and the weighted MISE
of Altman and Léger (1995), i.e.


R{MSE F̂(x; h)}w(x)f (x) dx for an arbitrary weighting function w. Thus the choice of the

weighting function does not affect the asymptotic order of the optimal bandwidth matrix. Furthermore, this order for
the unconstrained bandwidth HMISE agrees with the multivariate case of Liu and Yang (2008) for constrained bandwidth
matrices. We note that Liu and Yang (2008) exhibit more general results suitable for dependent samples and for higher
order kernels: condition (A2) implies that our results hold only for second order kernels. Theminimal MISE rate obtained by
Altman and Léger (1995) is order n−8/9. This is slower than what we obtain because they consider estimation of weighted
functionals of higher order than the second order functional ψ2 which we consider. Our case is a special case where the
weighting functionw is inversely proportional to the density f , affording a faster rate of convergence.
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The oracle optimal bandwidth HMISE is mathematically intractable in general: more tractable is its asymptotic proxy
HAMISE = argminH∈F AMISE F̂(·; H). The order n−4/3 convergence of HAMISE to HMISE (whose proof is omitted for brevity)
implies that the AMISE is an appropriate proxy in place of the MISE as the discrepancy of HMISE and HAMISE is asymptoti-
cally smaller than HMISE. The tractability of HAMISE allows it to be estimated more easily, and we say that Ĥ = argminH∈F

AMISE F̂(·; H) is a data-based estimator of HAMISE, where AMISE is an estimator of AMISE. Following Duong and Hazelton
(2005), the relative rate of convergence to Ĥ to HAMISE is OP(n−α) if Ĥ − HAMISE = OP(n−αJd2)vec HAMISE. Furthermore it
follows that the rate of Ĥ to HMISE will remain n−α whenever α < 4/3, from Theorem 2.

Different data-based selectors arise from different estimators of the AMISE. For consistent estimation, the key quantity
is the integrated functional ψ2. Denote by D = ∂/∂x = (∂/∂x1, . . . , ∂/∂xd) the first derivative (gradient) operator. If the
usual convention (∂/∂xi)(∂/∂xj) = ∂2/(∂xi∂xj) is taken into account, the rth order differential operator is rth fold Kronecker
product of D with itself, D⊗r , see Holmquist (1996). For a general r , let ψ2r = ED⊗2r f (X) =


Rd D⊗2r f (x)f (x) dx. The usual

kernel estimator is

ψ̂2r(G) = n−1
n

i=1

D⊗rLG(Xi) = n−2
n

i,j=1

D⊗rLG(Xi − Xj)

where L and G are possibly different kernel and bandwidth from K and H. The plug-in estimator of AMISE is obtained by
replacing ψ2 by ψ̂2(G),

PI(H;G) = n−1V1(F)− 2n−1m1(KK)H1/21d −
1
4m2(K)2(vecT H)⊗2ψ̂2(G). (3)

The plug-in bandwidth selector is

ĤPI = argmin
H∈F

{PI(H;G)− n−1V1(F)} (4)

where we have subtracted n−1V1(F) since it does not involve the bandwidth. Thus the problem becomes the selection of
this pilot matrix G.

Let the optimal bandwidth be GPI = argminG∈F MSEψ̂2(G) where MSE ψ̂2(G) = E∥ψ̂2(G) − ψ2∥
2. According to Chacón

and Duong (2010, Theorem 2), GPI is order n−2/(d+4). Furthermore, these authors outline a multi-stage selection algorithm
improves on the zero-stage selectors (normal scale selectors) of Altman and Léger (1995), Hall and Hyndman (2003) and Liu
and Yang (2008), and the 1-stage selector of Zhou and Harezlak (2002) and generalises the multi-stage univariate plug-in
selectors of Polansky and Baker (2000) for d > 1.

With the PI criterion consistently estimated, the next theorem establishes the convergence in probability of ĤPI to the
oracle selector HMISE.

Theorem 3. Suppose that the conditions (A1)–(A4) hold. Suppose that (A1) also holds for kernel L. The relative convergence rate
of ĤPI to HMISE is n−2/(d+4).

This reduces for d = 1 to the n−2/5 rate for a 1-stage plug-in selector of Polansky and Baker (2000). We are not able to
reproduce their n−1/2 rate for 2-stage selectors for d > 1 since this relies on a bias annihilation argument that is not possible
formultivariateMSE expressions, see Chacón and Duong (2010). Furthermore, we observe that AMISE F̂(·; H)−n−1V1(F) =

AMISE ˆ̄F(·; H) − n−1V1(F̄), implying that an AMISE-optimal selector for F̂ is thus also optimal for ˆ̄F . These agree with the
univariate case where it is more obvious since ˆ̄F(x; h) = 1 − F̂(x; h), see Berg and Politis (2006).

We do not consider cross validation methods, the main competitors to plug-in methods for data-based bandwidth
selection, here since this would involve lengthy algebraic manipulations and leave them for future work for the purposes of
brevity.

To conclude this section, we compare the potential gain in using an unconstrained bandwidth matrix over diagonal
bandwidth matrices, as measured by the asymptotic relative error ARE(F : D) = AMISE {F̂(·; H ∈ F )}/AMISE {F̂(·; H ∈

D)}. The diagonal selector is similar except that the optimisation ranges over the class of all positive definite diagonal
matrices D instead of over all positive definite matrices F .

Theorem 4. Suppose that F = Φρ is a bivariate normal distribution with variance [1, ρ; ρ, 1], and K = φ is the normal
kernel. These imply that (A1)–(A3) hold. Further suppose that the condition (A4) holds. The optimal matrix in F has the form
H = [h2, h12; h12, h2

] and inD , it hasH = [h2, 0; 0, h2
]. The asymptotic relative error, as a function of the correlation coefficient

ρ , is

ARE(F : D; ρ) =


V2(ρ)− 21/2π−1/2n−1 h

2
+ (h4

− h2
12)

1/2
+ h12

[h2 + (h4 − h2
12)

1/2]1/2

+
1
4 (4π)

−d/2(1 − ρ2)−1/2(h2
12 − 2ρh2h12)


V2(ρ)− 2π−1/2n−1h


where V2(ρ) = n−1V1(Φρ)+

1
4 (4π)

−d/2(1 − ρ2)−1/2h4.
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The term V2(ρ) in Theorem 4 contains expressions which are common to the both matrix classes, so we focus our atten-
tion on the other terms to investigate when an unconstrained matrix leads to a decrease in the ARE. Without lost of gener-
ality, assume that ρ > 0. We can show that if we have h12 > 0, i.e. the unconstrained matrix also has positive correlation,
then the terms immediately following V2(ρ) in the numerator and denominator respectively satisfy 21/2

[h2
+(h4

−h2
12)

1/2
+

h12]/[h2
+(h4

−h2
12)

1/2
]
1/2 > 2hwhich implies a reduction in the ARE. Furthermore, as ρ increases to 1, the third expression

in the numerator (h2
12 −2ρh2h12) becomes increasingly negative, again implying a reduction in the ARE. The improvements

in terms of these asymptotic relative errors are more modest than those observed for kernel estimators of density functions
(Wand & Jones, 1993) and of derivatives of density functions (Chacón, Duong, &Wand, 2011). This is due to that the O(n−1)
dominant term in the AMISE of distribution estimators does not depend on the bandwidth matrix. The bandwidth modifies
the AMISE only in the secondary terms of O(n−1H1/2

+ H2), unlike the case for density and density derivatives where the
bandwidth modifies the dominant terms in their respective AMISE.

3. Receiver operating characteristic curves

As noted in the introduction, the univariate ROC curve is {(F̄X1(x), F̄X2(x)) : x ∈ R}, whereas the straightforward multi-
variate generalisation {(F̄X1(x), F̄X2(x)) : x ∈ Rd

} does not result in a well-defined function, motivating us to define a ROC
curve as {(P(F̄X1(X1) > F̄X1(x)), P(F̄X1(X2) > F̄X1(x))) : x ∈ Rd

}. For an alternative definition which is more amenable for
estimation, let Yj = F̄X1(Xj), j = 1, 2, then a multivariate ROC curve is

{(FY1(z), FY2(z)) : z = F̄X1(x), x ∈ Rd
} (5)

where FYj is the cumulative distribution of Yj, as

FY1(z) = P(Y1 ≤ z) = P(F̄X1(X1) > F̄X1(x))

FY2(z) = P(Y2 ≤ z) = P(F̄X1(X2) > F̄X1(x))

since F̄X1 is monotonically decreasing. The transformations Yj = F̄X1(Xj) offer an alternative to the other dimension reduc-
tion transformations, e.g. rank 1 singular value decomposition or the linear scalar projection of Su and Liu (1993). One of
their main advantages is that it does not require parametric assumptions on the underlying random variables X1,X2 or on
the transformation.

We have two random samples X1 = {X1,1, . . . ,X1,n1} and X2 = {X2,1, . . . ,X2,n2}, with each X j sample being drawn
from a common distribution function FXj , j = 1, 2. As a visual tool, a ROC curve is well-suited to being cast in a kernel estima-
tion framework, as first proposed by Zou, Hall, and Shapiro (1997). With kernel estimators for cumulative distribution and
survival functions established, we are ready to define a kernel estimator of the components of a ROC curve based on Eq. (5) as

F̂Ŷj(z; H1, h2) = n−1
j

nj
i=1

Lh2(z − Ŷj,i) (6)

for a univariate kernel Lwith corresponding integrated kernel L, and Ŷj,i =
ˆ̄FX1(Xj,i; H1), i = 1, . . . , nj. Recall that for uni-

variate data X1, X2 that FY1 ∼ Unif[0, 1] always so no estimation is required, which implies that the multivariate problem is
more involved since both FY1 , FY2 must be estimated.

We begin by focusing on estimating the true positive rate FY2 . A main result concerning a separable form of the mean
squared error of F̂Ŷ2 is stated next. This separability will greatly facilitate automatic bandwidth selection.

Theorem 5. Suppose that the condition (A1) holds for the distribution FY2 , (A2)–(A3) for the kernels K , L andK,L, and (A4) for
the bandwidths H1, h2. The MISE of the estimator of the true positive rate F̂Ŷ2(·;H1, h2) has the conditionally separable form, as
n1, n2 → ∞,

MISE [F̂Ŷ2(·; H1, h2)] = MISE[EF̂Ŷ2(·; H1)|X1] + E[MISE F̂Ŷ2(·; h2)|X1]

where

MISE [EF̂Ŷ2(·; H1)|X1] =


Rd

MSE[F̂X1(x; H1)]fX2(x)
2/fX1(x){1 + o(1)} dx

E[MISE F̂Ŷ2(z; h2)|X1] =

n−1
2 V1(FY2)− 2n−1

2 m1(LL)h2 −
1
4m2(L)2h4

2ψY2,2

{1 + o(1)},

ψY2,2 =
 1
0 f ′′

Y2
(z)fY2(z) dz and fY2 is the density of FY2 .

By leaving out the contribution of the weighting function fX2(x)
2/fX1(x), our optimal selector based on X1 is defined as

H1,AMISE = argmin
H∈F

AMISE F̂X1(·; H), (7)
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allowing us to use, e.g. the plug-in data-based selector ĤPI developed in Eq. (4), to estimate it. For h2, the optimal bandwidth
has the explicit formula

h2,AMISE = argmin
h>0

AMISE F̂Y (·; h) =


2m1(LL)

−m2(L)2ψY2,2

1/3

n−1/3
2 . (8)

The data-based plug-in estimation of h2,AMISE of Polansky and Baker (2000) relies on the analysis of the univariate functionals
of the type ψY2,2 in Hall and Marron (1987).

The next theorem asserts that this sequential bandwidth selection strategy leads to the sameminimalMISE order as with
a more complex joint bandwidth selection argminH1∈F ,h2>0MISE [F̂Ŷ2(·; H1, h2)].

Theorem 6. Suppose that the condition (A1) holds for the distribution FY2 , (A2)–(A3) for the kernels K , L andK,L, and (A4) for
the bandwidths H1, h2. The MISE rate obtained by the sequential unweighted selectors H1,AMISE, h2,AMISE in Eqs. (7)–(8), is
asymptotically the same order as the minimal MISE as n1, n2 → ∞,

inf
H1∈F ,h2>0

MISE [F̂Ŷ2(·; H1, h2)]


− MISE [F̂Ŷ2(·; H1,AMISE, h2,AMISE)] = O(n−4/3
1 + n−4/3

2 ).

The last step is to verify that the bandwidth choices in Eqs. (7)–(8) also ensure that F̂Ŷ1 in Eq. (6) remains a consistent
estimator of the false positive rate FY1 . We further require the following assumptions.

(A5) For the random variable Y1 = FX1(X1), for its density function fY1 , all derivatives up to order 2 are bounded, continuous
and square integrable, and of order 4 exist, and the expected value of Y1 is µY1 < ∞.

(A6) For the random variable Ŷ1 = F̂X1(X1; H1), the random variable X1 does not coincide with any of the X1,1, . . . ,X1,n1 .

Theorem 7. Suppose that the conditions for Theorem 4 hold, and further suppose that (A5)–(A6) hold. As n1, n2 → ∞, the MISE
of the estimator of the false positive rate F̂Ŷ1 , when the optimal selectors in Eqs. (7)–(8) are used, is

MISE [F̂Ŷ1(·; H1,AMISE, h2,AMISE)] = n−1
1


V1(FY1)+ ψY1,0µY1(1 − µY1)+

1
3 − 2µY1V0(FY1)


+O(n−4/3

1 + n−1
1 n−1/3

2 + n−4/3
2 )

where ψY1,0 =
 1
0 fY1(z)

2 dz and V0(FY1) =
 1
0 FY1(z) dz.

ThisMISE rate implies that consistency of F̂Ŷ1 is maintained. Taking Theorems 5–7 together, the pairs {(F̂Ŷ1(z; H1, h2), F̂Ŷ2(z;
H1, h2)) : z ∈ [0, 1]} are MISE consistent estimators of the target ROC curve {(FY1(z), FY2(z)) : z ∈ [0, 1]}.

Given that Ŷj,i, j = 1, 2, i = 1, . . . , nj are supported on the unit interval, we base our estimation on Ŷ ′

j,i = G−1(Ŷj,i), for
a known univariate distribution function G with infinite support, to avoid the potential bias problems at the end points. So
we have FŶj(z) = FŶ ′

j
(G−1(z)). This allows us to avoid boundary bias when estimating h2,AMISE for Ŷ ′

2,1, . . . , Ŷ
′

2,n2
and thus

F̂Ŷ ′
2
(G−1(z); h2) = n−1

2
n2

i=1 Lh2(G
−1(z)− G−1(Ŷi)). The ROC curve estimate is defined as

F̂Ŷj(z; h2) = n−1
j

nj
i=1

Lh2(G
−1(z)− G−1(Ŷj,i)). (9)

This sequential bandwidth approach recalls the univariate proposals posited by Hall and Hyndman (2003), Lloyd and
Yong (1999) and Zhou and Harezlak (2002). Lloyd and Yong (1999) gave the bandwidth order as n−1/3 but did not specify
the constants. Zhou and Harezlak (2002) investigated several data-based selectors for kernel distribution estimators, but did
not establish their convergence for ROC curves. Hall and Hyndman (2003) proposed selectors based on the weighted MISE, 1
0 MSE[R̃(z; h1, h2)]fX1(F

−1
X1
(z)) dz =


R MSE[F̂X1(x; h1)]fX2(x)

2 dx +


R MSE[F̂X2(x; h2)]fX1(x)
2 dx, where R̃(z; h1, h2) =

1 − F̂X2(F̂
−1
X1
(1 − z; h1); h2) is their ROC curve estimator, to avoid problems that may arise from the division of fX1 in an

unweighted
 1
0 MSE[R̃(z; h1, h2)] dz. This leads to other challenges since these weighted kernel estimators are difficult to

analyse mathematically. Hall and Hyndman (2003) circumvented this difficulty by relying on normal scale approximations
of these quantities, even though these normal scale estimators are not consistent if the true densities are non-normal. So
these authors optimised amathematically precise weightedMISE criterion but introduced simplifying assumptions into the
computation. Results, from e.g. Altman and Léger (1995), Hall and Hyndman (2003) and Sarda (1993), demonstrate that
using a weighting function which is independent of the data sample does not affect the asymptotic order of the MISE.
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Fig. 2. Perspective plots of three bivariate normal mixture distributions.

Fig. 3. Box plots of ISEs of kernel estimators of bivariate normal mixture distributions for N = 400 simulation trials of sample size n = 1000, as a
function of exponents of the optimal bandwidth matrix. Within each panel are the ISE box plots for the kernel estimator F̂ with bandwidths Ĥa

PI , for
a = 2/5, 1/2, 3/4, 4/5, 1, 5/4, 4/3, 2, 5/2.

4. Numerical results

4.1. Cumulative distribution functions

We examine the finite sample properties of our proposed kernel estimators of cumulative distribution functions for the
twelve bivariate normal mixture distributions from Chacón (2009). Since they give similar results, we present only three
of them, namely Distribution #1: N((0, 0), [1/4, 0; 0, 1]); Distribution #8: 1/2N((1,−1), [4/9, 14/25; 14/25, 4/9]) +

1/2N((1,−1), 4/9I2) and Distribution #12: 1/2N((0, 0), I2) + 3/40N((0, 0), 1/16[1,−0.9; −0.9, 1]) + 1/5N((1, 1),
1/4[1,−0.9; −0.9, 1]) + 3/40N((−1, 1), 1/8I2) + 3/40N((−1,−1), 1/8[1,−0.9; −0.9, 1]) + 3/40N((1,−1), 1/16I2),
whose perspective plots are given in Fig. 2.

For a data sample, we compute the plug-in selector ĤPI in Eq. (4), as implemented in the ks package (Duong, 2007) in
the R statistical programming environment. This 2-stage selector, using the normal kernel K = φ, is:

1. Begin with ψ̂
NS
4 (S) = D⊗4φ2S(0)where S is the sample variance of X1, . . . ,Xn.

2. Compute the pilot bandwidth ĜPI = argminG∈F ∥n−1
|G|

−1/2(G−1/2
⊗ G−1/2)D⊗2φ(0)+

1
2 (vec

TG ⊗ Id2)ψ̂
NS
4 (S)∥

2.
3. Compute the integrated density functional ψ̂2(ĜPI) = n−2 n

i,j=1 D
⊗2φĜPI

(Xi − Xj).

4. Compute the plug-in bandwidth ĤPI = argminH∈F [−2(4π)−1/2n−1tr(H1/2Jd)−
1
4 (vec

T H)⊗2ψ̂2(ĜPI)].

The optimisations are carried using a quasi-Newton BFGS routine in the R base software. This algorithm closely follows the
bandwidth selectors for density derivative estimation in Chacón et al. (2011). These authors also outline how to compute
efficiently the derivatives of the normal density function. Kernel estimators on the same data sample are then recomputed
with Ĥa

PI for a = 2/5, 1/2, 3/4, 4/5, 5/4, 4/3, 2, 5/2. Since |ĤPI| < 1, then values of a < 1 lead to over-smoothing, and
a > 1 to undersmoothing. The performancemeasure is the integrated squared error ISE(H) =


R2 [F̂(x;H)−F(x)]2 dxwhich

is approximated by a Riemann sum, since it does not have a closed form like the ISE of normal mixture densities. The box
plots of these ISEs for N = 400 trials of sample size n = 1000 is shown in Fig. 3. The proposed ĤPI falls in the interval of the
exponents (a = 1, 5/4, 4/3)which yield the smallest ISEs, as expected from Theorem 3. Large amounts of undersmoothing
(a = 5/2) or oversmoothing (a = 2/5) produce estimates with inflated ISEs, though we note that the undersmoothing is
less serious than oversmoothing.

We compare the empirical gain in using an unconstrained bandwidth matrix over diagonal bandwidth matrices, as
measured by the empirical ARE(F : D) = ISE {F̂(·; ĤPI)}/ISE {F̂(·; ĤPI,D)}. The diagonal selector ĤPI,D is similar to ĤPI
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Fig. 4. Box plots of AREs of kernel estimators of bivariate correlated normal distributions for N = 400 simulation trials of sample size n = 1000, as a
function of the correlation coefficient. The ARE(F : D) is estimated by the ratio of ISE F̂(·; ĤPI) for an unconstrained plug-in matrix ĤPI ∈ F , divided by
ISE F̂(·; ĤPI,D ) obtained with a diagonal plug-in matrix ĤPI,D ∈ D .

except that the optimisation ranges over the class of all positive definite diagonal matrices D . We draw N = 400 samples
of n = 1000 from a bivariate normal with mean zero and variance 1/4[1, ρ; ρ, 1], for ρ ∈ (0, 0.1, 0.2, . . . , 0.9). Fig. 4 is the
ARE plots as estimated by the ratios of the corresponding ISEs, as a function of the correlation coefficient ρ. In Fig. 4, the ISE
is not inflated using an unconstrained bandwidthmatrix when a diagonal matrix is optimal (low values of correlations), and
is most beneficial for ISE reduction, as expected from the ARE results in Theorem 4, for high correlations (ρ > 0.7), though
the parametrisation of the bandwidth matrix has only a limited effect in ISE reduction for kernel distribution estimators.

4.2. Receiver operating characteristic curves

The computational algorithm for our proposed multivariate ROC curve estimator is:

1. The two data samples are X1 = {X1,1, . . . ,X1,n1} and X2 = {X2,1, . . . ,X2,n2}. From the first sample X1, compute the

kernel estimator in Eq. (2) of its survival function ˆ̄FX1(·; Ĥ1), using a data-based plug-in selector, Ĥ1 in Eq. (7), using the
algorithm for ĤPI in Section 4.1.

2. Create the univariate auxiliary random variables Ŷj,i =
ˆ̄FX1(Xj,i; Ĥ1), i = 1, . . . , nj, j = 1, 2. Compute the kernel estima-

tors in Eq. (9) of their cumulative distribution functions, using the scalar plug-in selector ĥ2 in Eq. (8), using the algorithm
in Polansky and Baker (2000), and G = Φ . The quantile–quantile plot of these two distributions F̂Ŷ1 vs. F̂Ŷ2 is the required
kernel estimator of the ROC curve which compares X1 and X2.

This algorithm has been implemented in the ks package. As noted previously, since there is little difference in the
performance between unconstrained and diagonal bandwidth matrices for kernel estimators of distribution functions, we
have omitted the latter from this section. For each pair of simulated data, we compute the

• bivariate kernel ROC curve with optimal (unconstrained) bandwidths R̂KOPT

• univariate kernel ROC curves of the marginal variables R̂K1, R̂K2

• univariate kernel ROC curve of the best linear scalar projection of the variables R̂KSL of Su and Liu (1993). The best scalar
linear projection is defined as Yj,i = (trS1 + trS2)−1(X̄2 − X̄1)

TXj,i where X̄j, Sj are the sample mean and variance of
X j, j = 1, 2, i = 1, . . . , nj.

4.2.1. Simulated data for bivariate normal mixtures
To examine the finite sample properties of this computational algorithm, we examine three pairs of bivariate normal

mixture densities: Pair #1: N((0, 0), I2) vs. N((2/3, 2/3), I2), Pair #2: 1/2N((−3/2, 0), 2/3I2)+ 1/2N((1/2, 0), 2/3I2) vs.
1/2N((−1, 1/4), 2/3I2)+ 1/2N((1, 1/2), 2/3I2), and Pair #3: 1/2N((−7/8, 7/8), 1/4I2)+ 1/2N((7/8,−7/8), 1/4I2) vs.
1/2N((−7/8,−7/8), 1/4I2)+ 1/2N((7/8, 7/8), 1/4I2). Pair #1 differs only in the means of the two normal variables and
so can be considered a base case. Pair #2 differs by a small translation in both variables, though the difference for x1 is
between two marginal bimodal distributions. Pair #3 is where both pairs of marginal densities are the same, whereas the
join densities are different, so we expect an important gain from using a bivariate method over univariate one.

We begin with some plots from a representative sample of size n1 = n2 = 1000 in Fig. 5. Each row corresponds to
each pair of target densities. In the first column are the kernel estimates of the marginal density for the first variable x1,
the second column for the second variable x2, and the third column for the joint density of (x1, x2). The density estimates
based solely on the x1 variable are coloured in black, the x2 variable in blue, and the bivariate (x1, x2) variable in red. For
the first three columns, the estimates based on the first sample X1 are represented by solid lines, the second sample X2

by the dashed lines. In the fourth column, the ROC curve estimate R̂K1 is the black dashed line, R̂K2 is dotted blue line, and
R̂KOPT is the solid red line. The horizontal axis is the false positive rate ˆ̄FX1 or the complement of the specificity F̂X1 (labelled
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Fig. 5. Density estimates and ROC curves for marginal and joint variables for bivariate normal mixture pairs. Each row corresponds to the results from a
representative n1 = n2 = 1000 sample drawn from each of the target bivariate density pairs. Black represents estimates based on the first variable x1 only,
blue the second variable x2 only, and red the joint variables (x1, x2). The first column is themarginal density estimates of x1 , the second column themarginal
density estimates of x2 , the third column the joint density estimates of (x1, x2). In these first three columns, the first sample is represented by the solid lines,
the second sample by the dashed lines. The fourth column displays the ROC curves: R̂K1 is black dashed, R̂K2 is dotted blue, scalar projected R̂SL is dot-dashed
cyan, and R̂KOPT is solid red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

specificity); the vertical axis is the true positive rate F̂X2 or the sensitivity. For Pair #1, the two bivariate based ROC curves
KOPT, KSL are uniformly better than themarginal ROC curves K1, K2, as expected. Since both distributions are bivariate nor-
mal, the performance of KSL is optimal (see Su and Liu (1993)) andwe observe that our kernel based ROC curve exhibits very
similar performance. For Pair #2, KSL does less well than KOPT since the latter becomes less optimal when the underlying
distributions are non-normal: in this case, bimodality is noticeable in the x1-variable. KSL remains narrowly better than K2
and uniformly better than K1. For Pair #3, both univariate ROC curves K1, K2 are non-informative. Since each distribution in
this pair are well-separated bimodal distributions, KSL chooses a sub-optimal scalar projection which produces a ROC curve
that is narrowly better than the non-informative marginal univariate ROC curves. Whereas the bivariate ROC curve KOPT
correctly shows that a large difference exists between the samples.

In addition to these representative plots, we perform a quantitative simulation study for N = 400 repetitions for each
of the normal mixture pairs for sample size n1 = n2 = 100 and n1 = n2 = 1000. We compute the Youden index as our
summary measure of performance, rather than the ISE or the area under the ROC curve (AUC), see Shapiro (1999) for a dis-
cussion of the relative merits of the Youden index over the AUC for continuous random variables. Youden (1950) originally
defined his subsequently eponymous index as the maximum of the difference of the true positive rate (sensitivity) and the
false positive rate (complement of specificity), assuming that false positives and true positives are equally weighted. For
ROC curves, the Youden index is the maximum deviation of the ROC curve from the diagonal line, i.e. a non-informative
ROC curve. For interpretation, a set of variables is discriminatory if their ROC curve has a Youden index close to 1, whereas
a non-informative ROC curve has a Youden index close to 0.

Since the results for both n1 = n2 = 100 and n1 = n2 = 1000 are similar, we show only the box plots for these summary
indices in Fig. 6 for the larger sample size. These box plots verify our intuitive observations from the representative samples
in Fig. 5. The target Youden index is approximated by the maximum of |FX1 − FX2 | over a grid, since the index is also the
supremumnorm of the L1 difference between the two distributions supx∈Rd |FX1(x)−FX2(x)|, see Lloyd and Yong (1999). For
Pair #1, the target Youden index is 0.32. As expected, the univariate marginal ROC curves K1, K2 underestimate the Youden



42 T. Duong / Journal of the Korean Statistical Society 45 (2016) 33–50

Fig. 6. Box plots for Youden indices of ROC curves of bivariate normal mixture pairs for N = 400 simulation trials of sample size n1 = n2 = 1000. The
marginal univariate ROC curves R̂K1, R̂K2 the scalar projected ROC curve R̂KSL , and the bivariate ROC curve R̂KOPT . The dotted line is the target Youden index.

Fig. 7. Box plots for Youden indices of ROC curves of bivariate normal mixture pairs for N = 400 simulation trials of sample size n1 = n2 = 1000, as
a function of exponents of the optimal bandwidths. Within each panel are the box plots of the summary indices for KOPT, the kernel estimator R̂ with
bandwidths Ĥa

PI, ĥ
a
PI , for a = 2/5, 1/2, 3/4, 4/5, 1, 5/4, 4/3, 2, 5/2.

index, whereas the KSL and KOPT both overestimate it, with the latter with a slightly smaller overestimation and the closest
overall to the target Youden value. For Pair #2, the target Youden index is 0.22. The separation of KSL and KOPT from the
univariate marginal ROC curves K1, K2 is maintained. KOPT most accurately estimates the Youden index, though both K2
and KOPT give reasonable Youden indices. For Pair #3, the target Youden index is 0.42, implying that the advantage of
KOPT is amplified. Overall, KOPT is better than KSL which better than the 1-dimensional marginal ROC curves. This confirms
that multivariate non-parametric estimators outperform parametric estimators when the parametric assumptions are not
satisfied, and that multivariate estimators can distinguish structure which are hidden by lower dimensional projections.

We proceed with an examination of the behaviour of the optimal plug-in selector KOPT as a function of bandwidth expo-
nents in Fig. 7. The KOPT curve is first computed, i.e. the kernel ROC curve estimator with the plug-in selectors Ĥ1, ĥ2 from
Eqs. (7)–(8). Kernel estimators on the same data sample are then recomputed with Ĥa

1, ĥ
a
2 for a = 2/5, 1/2, 3/4, 4/5, 5/4,

4/3, 2, 5/2. Since |Ĥ1|, ĥ2 < 1, then values of a < 1 lead to over-smoothing, and a > 1 to undersmoothing. The proposed
KOPT falls inside the interval of exponents (a = 1, 5/4, 4/3)with maximal Youden indices for Pairs #1,#2, and the interval
of exponents (a = 3/4, 4/5, 1) for Pair #3. Although Theorem 6 asserts only the MISE optimality of the KOPT estimator,
Fig. 7 empirically shows that this optimality also applies to the other summary measures such as the Youden index.

4.2.2. Joint multivariate biomarker validation
To illustrate our proposed multivariate ROC curve algorithm on experimental data, we return to the Pilot Study of

Biomarkers for Spinal Muscular Atrophy data set presented in the introduction. Our goal here is to validate the diagnostic
power in terms of ROC curves of these combinations of biomarkers: Glycine (Gly), L-glutamic (L-Glu) and 1-methyl-L-
histidine (methyl L-Hist) The marginal univariate kernel density estimates are given in the upper row of Fig. 8, followed
by the trivariate density estimates on the lower row. On the lower centre panel are the individual ROC curves for Gly R̂K1

in dashed black, L-Glu R̂K2 in dotted blue, methyl L-Hist R̂K3 in dot-dashed cyan, the scalar projected ROC curve R̂KSL in long
dashedmagenta, the joint ROC curve R̂KOPT in solid red. The joint trivariate ROC curve has better true positive rates for all false
positive rates, except for those in the approximate range [0, 2, 0.4]. This visual improvement is verified by an improvement
in the summary indices: Youden(R̂K1) = 0.112, Youden(R̂K2) = 0.279, Youden(R̂K3) = 0.195, Youden(R̂KSL) = 0.198,
Youden(R̂KOPT) = 0.286. We demonstrate that while the diagnostic power of the marginal univariate biomarkers singly can
already be good, it can be improved on by the ROC curve of the joint trivariate biomarkers.

5. Discussion

We have introduced a fully non-parametric estimator of the receiver operating characteristic curve to compare two
multivariate samples, based on a combination of kernel estimators of cumulative distribution and survival functions. As is
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Fig. 8. Joint multivariate biomarker validation for Spinal Muscular Atrophy (SMA). Kernel density estimates of negative log concentrations (µM). The
control density estimates are solid lines, and the SMA density estimates are dashed lines. Upper left—Glycine (Gly). Upper centre—L-glutamic (L-Glu).
Upper right—1-methyl-L-histidine (methyl L-Hist). Lower right—Kernel density estimate of (Gly, L-Glu, methyl L-Hist). The control density estimate are
blue contour shells, and the SMA density estimate are red contour shells. Lower centre—ROC curves for individual and joint biomarkers: Gly R̂K1 is dashed
black, L-Glu R̂K2 is dotted blue, methyl L-Hist R̂K3 is dot-dashed cyan, scalar projection R̂KSL is long dashed magenta, joint (Gly, L-Glu, methyl L-Hist) R̂KOPT
is solid red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

crucial for all kernel estimators, we have supplied consistent, data-based algorithms for optimal selection for all required
smoothing parameters. Whilst the performance gain from using maximally general unconstrained bandwidth matrices
over their constrained counterparts is modest, one of the main contributions of this manuscript has been to recast their
analysis in a mathematical framework which will facilitate the development of kernel estimators of other quantities based
on cumulative distribution and survival functions, e.g. the hazard function, the Lorenz curve and theGini coefficient.Wehave
treated the kernel estimation case, since they are an important case in their own right for low dimensional data analysis,
but importantly they also serve as a learning ground for future research. The results developed here are amenable to being
extended to other non-parametric estimation techniques which are more suitable for high dimensional data, e.g. splines,
wavelets, nearest neighbour, etc. For high dimensional discrimination and variable (subset) selection problems,multivariate
ROC curves would be an important addition to the suite of data analytic methods.
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Appendix

A.1. Proofs for Section 2

Proof of Theorem 1. Under the regularity guaranteed by (A1)–(A3), the expected value is, by repeatedly applying integra-
tion by parts,

EF̂(x; H) = EKH(x − X) =


Rd

K(H−1/2(x − y))f (y) dy =


Rd

K(H−1/2(x − y))
∂d

∂y1 · · · ∂yd
F(y) dy

...
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= (−1)d


Rd

∂d

∂y1 · · · ∂yd
K(H−1/2(x − y))F(y) dy

= (−1)2d


Rd
|H|

−1/2K(H−1/2(x − y))F(y) dy = KH ∗ F(x)

using that K(∞) = F(∞) = 1 and K(−∞) = F(−∞) = 0 as K, F are multivariate distribution functions.
For the variance, we have Var F̂(x; H) = n−1E[KH(x−X)2]−n−1

[EKH(x−X)]2. The second term is the same as above,
so it leaves us to evaluate

E[KH(x − X)2] =


Rd

K(H−1/2(x − y))2f (y) dy =


Rd

K(H−1/2(x − y))2
∂d

∂y1 · · · ∂yd
F(y) dy

= (−1)d


Rd

∂d

∂y1 · · · ∂yd
K(H−1/2(x − y))2F(y) dy

=


Rd

2|H|
−1/2K(H−1/2(x − y))K(H−1/2(x − y))F(y) dy

=


Rd

2KH(x − y)KH(x − y)F(y) dy = 2(KHKH ∗ F)(x).

Obtaining the MSE is straightforward. Obtaining the MISE from the MSE is also straightforward since we can interchange
the order of integration according to the conditions (A1)–(A3).

For the asymptotic analysis, we follow the framework established by Nadaraya (1964) for univariate data, later adapted
to multivariate data, e.g. Liu and Yang (2008). For the expected value,

EF̂(x; H) =


Rd

K(w)F(x − H1/2w) dw

=


Rd

K(w)

F(x)− wT H1/2DF(x) +

1
2w

T H1/2D2F(x)H1/2w

{1 + o(1)} dw

= F(x)+
1
2m2(K)tr(HD2F(x))+ o(trH),

using the usual rearrangementwT H1/2D2F(x)H1/2
= tr(wwT HD2F(x)). For the variance, we have

E[K(H−1/2(x − X))2] =


Rd

2K(w)K(w)F(x − H1/2w) dw

=


Rd

2K(w)K(w)[F(x)− wT H1/2DF(x)]{1 + o(1)} dw

= F(x)− 2


Rd
K(w)K(w)wT H1/2DF(x){1 + o(1)} dw

since


R K(w)K(w) dw = 1/2. Thus Var F̂(x; H) = {n−1F(x)(1 − F(x))− 2n−1m1(KK)T H1/2DF(x)}{1 + o(1)}.
For further simplification in the MISE, we note that for any xj,

F(x) =

 x

−∞

f (w) dw ≤


∞

−∞

· · ·

 xj

−∞

· · ·


∞

−∞

f (w) dw =

 xj

−∞

fj(wj) dwj

where fj is the jth marginal density of F . Thus element-wise DF(x) ≤ (f1(x1), . . . , fj(xj)) = f (x)1d{1 + o(1)} as F does not
depend on n from (A1). Furthermore, D2F(x) = Df (x)1T

d{1 + o(1)}. Using these, the squared bias becomes tr2(HD2F) =

(vecT H vecD2F)(vecTD2F vecH) = vecT (HTDf 1d)vec(1T
d HDf ) = (vecT H2)(Df ⊗ Df ). Integrating this,

Rd
Bias2F̂(x;H) dx =

1
4m2(K)2(vecT H2)


Rd
(Df (x)⊗ Df (x)){1 + o(1)} dx

= −
1
4m2(K)2(vecT H2)


Rd

D⊗2f (x)f (x){1 + o(1)} dx = −
1
4m2(K)2(vecT H2)ψ2{1 + o(1)}.

Likewise, the integrated variance is
Rd

Var F̂(x;H) dx =


Rd


n−1F(x)(1 − F(x))− 2n−1m1(KK)T H1/2f (x)1d


{1 + o(1)} dx

= {n−1V (F)− 2n−1m1(KK)T H1/2
}{1 + o(1)},

and the AMISE F̂(·;H) result follows immediately.
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For the survival function estimator, the first moment of KH(X − x) is

EKH(X − x) =


Rd

KH(y − x)f (y) dy =


Rd

KH(x − y)F̄(y) dy = KH ∗ F̄(x)

and its second moment is

EKH(X − x)2 =


Rd

KH(y − x)2f (y) dy = −2


Rd
KH(x − y)KH(x − y)F̄(y) dy = 2KHKH ∗ F̄(x),

using the symmetry of K . Combining Taylor’s expansions of these expressions leads to the appropriate asymptotic bias and
variance formulas. For the AMISE, we use DF̄(x) = −f (x)1d{1 + o(1)} and D2F̄(x) = −Df (x)1T

d{1 + o(1)}, in a similar
calculation to that for F above. �

Proof of Theorem 2. Let DH = ∂/(∂vec H) be the vector of differentials with respect to vec H. Then HMISE is a solution to
DHMISE F̂(·; H) = 0. Computing derivatives directly is complicated so we adopt the approach of Magnus and Neudecker
(1999) of converting differentials to derivatives. For a d × d symmetric matrix A, dtr(H2A) = vecT (AH + HA)(dvec H), and
dtr(H1/2A) =

1
2vec

T (AH−1/2
+ H−1/2A)d vec H. Thus the derivative of the MISE is

DHMISE F̂(·; H) =
1
4m2(K)2


Rd

vec (HD2F(x)+ D2F(x)H) dx

− n−1


Rd
(H−1/2

⊗ m1(KK)DF(x)T + m1(KK)DF(x)T ⊗ H−1/2) dx.

In general this matrix equation does not have an explicit solution. Nonetheless if we letHMISE = O(n−α)Jd, where Jd is a d×d
matrix whose elements are all ones, then matching coefficients requires that α = 2/3. Substituting this HMISE = O(n−2/3)
into the MISE formula, we obtain that the minimal MISE is order n−1V1(F)+ O(n−4/3). �

Following Duong and Hazelton (2005), the relative rate of convergence to Ĥ to HAMISE is OP(n−α) if Ĥ − HAMISE =

OP(n−αJd2)vec HAMISE. Since convergence in probability can be difficult to demonstrate directly, these authors show that
in their Lemma 1 that this order in probability is implied by

MSE[DH( AMISE − AMISE)(HAMISE)] = O(n−2αJd2)(vec HAMISEvecT HAMISE)

since MSE Ĥ = E∥ vec (Ĥ − HAMISE)∥
2

= MSE[DH( AMISE − AMISE)(HAMISE)]{1 + o(1)}.

Proof of Theorem 3. MSE[DH(PI − AMISE)(HAMISE)] is a key quantity to compute. From the definitions of PI and AMISE,
Eq. (3) and Theorem 2 respectively,

(PI − AMISE)(H) =
1
4m2(K)2(vecT H2)[ψ2 − ψ̂2(G)].

Since d((vecT H2) vecA) = vecT (AH + HA)(dvec H) = (vecTA)(H ⊗ Id + Id ⊗ H)(dvec H), then DH[(PI − AMISE)](H) =
1
4m2(K)2(H⊗ Id + Id ⊗ H)[ψ2 − ψ̂2(G)]. The mean squared error is MSE{DH[(PI− AMISE)]}(H) =

1
16m2(K)4(H⊗ Id + Id ⊗

H)MSE[ψ̂2(G)](H ⊗ Id + Id ⊗ H), i.e.

MSE{DH[(PI − AMISE)]}(HAMISE) = MSE[ψ̂2(G)](vec HAMISE)(vecT HAMISE)

= O(n−4/(d+4))(vec HAMISE)(vecT HAMISE)

since Theorem 2 from Chacón and Duong (2010) shows that the infimum ofMSE ψ̂2(G) has order n−4/(d+4). So ĤPI converges
to HAMISE at rate n−2/(d+4). Since this rate dominates n−4/3, then ĤPI converges to HMISE at the same rate. �

Proof of Theorem 4. From Azzalini (1985), the expected value of the skew normal distribution with parameter λ is
∞

−∞
2xφ(x)Φ(λx) dx = λ


2/[π(1 + λ2)]. By setting λ = 1, we obtain that m1 = m1(φΦ) = (4π)−1/2. Since the compo-

nents of K = φId are independent of each other then m1(φIdΦId) = m11d. As usual, m2(φId) = 1. From Chacón and Duong
(2010, Formula (7)), ψNS

2 = −
1
2 (4π)

−d/2
|6|

−1/2vec6−1 so the normal scale estimate of the AMISE follows as AMISENS(H)
= n−1V1(Φ6) − 2n−1(4π)−d/2tr(H1/2Jd) +

1
8 (4π)

−d/2
|6|

−1/2tr(H26−1). For the special case of a bivariate normal with a
standard correlation matrix 6 = [1, ρ; ρ, 1], for H = [h2, h12; h12, h2

], the matrix square root is H1/2
= (2h2

+ 2(h2
−

h2
12)

1/2)−1/2
[h2

+ (h4
− h2

12)
1/2, h12; h12, h2

+ (h4
− h2

12)
1/2

] which gives

AMISENS(H) = n−1V1(Φρ)− 21/2π−1/2n−1 h
2
+ (h4

− h2
12)

1/2
+ h12

[h2 + (h4 − h2
12)

1/2]1/2
+

1
4 (4π)

−d/2(1 − ρ2)−1/2(h2
+ h2

12 − 2ρh2h12).

For H = [h2, 0; 0, h2
], we have AMISENS(H) = n−1V1(Φρ) − 2π−1/2n−1h +

1
4 (4π)

−d/2(1 − ρ2)−1/2h2 and the result
follows. �
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A.2. Proofs for Section 3

The proof of Theorem 5 requires the following Lemmas 1 and 2. Let η be a d-dimensional parameter (non-random vector)
and q : Rd

→ R be a multivariate non-random function. If η̂ and q̂(·) are estimators of η and q(·), we study the properties
of the ‘double plug-in’ estimator q̂(η̂), as well as the case where η, η̂ are defined as the solutions of q(η) = q̂(η̂) = c , for a
constant c.

Lemma 1. Suppose that q : Rd
→ R has continuously differentiable second order partial derivatives, and that q̂(·), η̂ are

estimators of q, η based on a random sample of size n which have finite variance.
(i) As n → ∞, the mean squared error of q̂(η̂) is

MSE q̂(η̂) = {MSE q̂(η)+ Dq(η)T (MSE η̂)Dq(η)+ 2 Cov(q̂(η), η̂TDq(η))}{1 + o(1)}.

(ii) Further suppose that η, η̂ are solutions to the equations q(η) = q̂(η̂) = c for a constant c which does not depend on η, η̂. As
n → ∞, the mean squared error of η̂ is implicitly defined as

Dq(η)T (MSE η̂)Dq(η) = {MSE q̂(η)}{1 + o(1)}.

Proof of Lemma 1. (i) Following Lloyd (1998) and expanding q̂(η̂) about η yields

q̂(η̂) = {(q̂ − q)(η̂)} + {q(η̂)} = {(q̂ − q)(η+ (η̂− η))} + {q(η+ (η̂− η))}

= {(q̂ − q)(η)[1 + o(1)]} + {q(η)+ (η̂− η)TDq(η)+
1
2 (η̂− η)TD2q(η)(η̂− η)[1 + o(1)]}

= q(η)+ {(q̂ − q)(η)+ (η̂− η)TDq(η)+
1
2 (η̂− η)TD2q(η)(η̂− η)}{1 + o(1)}.

Taking expected values yields Bias q̂(η̂) = Bias q̂(η) + (BiasT η̂)Dq(η) +
1
2 tr[(MSE η̂)D2q(η)]{1 + o(1)}. For the variance,

truncating q̂(η̂) at the linear term and Eq̂(η̂) at the constant term, we obtain

Var q̂(η̂) = E[q̂(η̂)− Eq̂(η̂)]2 = E[q̂(η)+ (η̂− η)TDq(η)− Eq̂(η)]2{1 + o(1)}
=


E[q̂(η)− Eq̂(η)]2 + E[(η̂− η)TDq(η)]2 + 2E{[q̂(η)− Eq̂(η)][(η̂− η)TDq(η)]}


{1 + o(1)}

= {Var q̂(η)+ Dq(η)T (MSE η̂)Dq(η)+ 2 Cov(q̂(η), η̂TDq(η))}{1 + o(1)}.

Toobtain aMSE expression, it ismore efficient to compute it directly from q̂(η̂)−q(η) = {(q̂−q)(η)+(η̂−η)TDq(η)}{1+o(1)}
than from the usual squared bias and variance sum. That is

MSE q̂(η̂) = E[(q̂ − q)(η)+ (η̂− η)TDq(η)]2{1 + o(1)}

= {MSE q̂(η)+ Dq(η)T (MSE η̂)Dq(η)+ 2 Cov(q̂(η), η̂TDq(η))}{1 + o(1)}.

(ii) For the moments of η̂, it is straightforward to infer that

(BiasT η̂)Dq(η) = Bias q̂(η̂)− Bias q̂(η)−
1
2 tr[(MSE η̂)D2q(η)]{1 + o(1)}.

We rearrange the linear truncation of q̂(η̂) to isolate (η̂− η)TDq(η) = {q̂(η̂)− q̂(η)}{1+ o(1)}. Squaring each side and then
taking expectations, we obtain

Dq(η)T (MSE η̂)Dq(η) = E[q̂(η̂)− q(η)+ q(η)− q̂(η)]2{1 + o(1)}
= {MSE q̂(η̂)+ MSE q̂(η)+ 2E[(q̂(η̂)− q(η))(q̂(η)− q(η))]}{1 + o(1)}. �

Lemma 1(i) allows us to use the analysis of the simpler single plug-in estimator q̂(η) instead of those of the more
complicated, double plug-in estimator q̂(η̂). Likewise Lemma 1(ii) implies that the more complicated analysis of the vector
estimator η̂ is asymptotically equivalent to that of the scalar valued estimator q̂(η).

The proof of Theorem 5 further requires an auxiliary result for kernel estimators of quantile functions, as defined, for
example by Azzalini (1981) and Nadaraya (1964). Let θ = (θ1, θ2, . . . , θd) be the z-quantile of X if θ = θ(z) satisfies
F(θ(z)) = P(X ≤ θ(z)) = z, 0 ≤ z ≤ 1. This is not the onlyway to definemultivariate quantiles: others have been proposed,
see for example Serfling (2002) for a review of approaches based on depth functions, norm minimisation, inversion maps,
gradient search and quantile processes. We use this definition as it is intuitively the inverse operation to the cumulative
distribution function.With the kernel estimator of the distribution function F̂ , the implicit definition of the kernel estimator
of the z-quantile is θ̂(z;H) where F̂(θ̂(z;H)) = z. To apply Lemma 1 to obtain the moments of θ̂(z;H), we set q = F ,
η = θ(z), and the estimators q̂ = F̂(·;H), η̂ = θ̂(z; H).

Lemma 2 extends the mean squared error analysis of univariate quantile estimators of Azzalini (1981) and Falk (1984),
confirming that their assertions that kernel quantile estimators are asymptotically more efficient than empirical quantiles
are equally valid for multivariate quantiles. These authors (amongst others) state closely related results, but only Cheng and
Sun (2006) appears to be the exact counterpart to Lemma 2 for d = 1. It is straightforward to show that an equivalent result
holds for the upper quantiles θ̄(z), ˆ̄θ(z; H) defined as F̄(θ̄(z)) =

ˆ̄F( ˆ̄θ(z)) = z.
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Lemma 2. Suppose that the conditions (A1)–(A4) hold. For a non-random value z, 0 ≤ z ≤ 1, the expected value, variance and
MSE of the kernel quantile estimator θ̂(z; H) are implicitly defined by

DF(θ(z))T [MSE θ̂(z;H)]DF(θ(z)) =

n−1z(1 − z)− 2n−1m1(KK)T H1/2DF(θ(z))

+
1
4m2(K)2tr2(HD2F(θ(z)))


{1 + o(1)}.

Proof of Lemma 2. Applying Lemma 1 to q = F , q̂ = F̂ , and η = θ(z), η̂ = θ̂(z), we have

(BiasT θ̂)DF(θ) =


Bias F̂(θ̂; H)− Bias F̂(θ; H)−

1
2 tr[(MSE θ̂)D2F(θ)]


{1 + o(1)}

=


−Bias F̂(θ; H)−

1
2 tr[(MSE θ̂)D2F(θ)]


{1 + o(1)}

since F̂(θ̂; H) = z is a constant, then Bias F̂(θ̂; H) is identically zero. From Theorem 1, then

(BiasT θ̂)DF(θ) =


−

1
2m2(K)tr(HD2F(θ))−

1
2 tr[(MSE θ̂)D2F(θ)]


{1 + o(1)}.

To simplify the bias, let Bias θ̂ = cb{1+o(1)}where b is a d-vector not involving n, and c is scalar which collects all terms
involving n. Thenwe have cbTDF = −

1
2m2(K){tr[(H+Var θ̂)D2F ]+c2(bTD2Fb)} or 1

2m2(K)bTD2Fbc2+bT ξc+ 1
2m2(K)v = 0

where v = tr((H + Var θ̂)D2F). The solution of the quadratic equation is

c = {−bTDF + [(bTDF)2 − m2(K)2bTD2Fb]1/2}/[m2(K)bTD2Fb]
= bTDF/[m2(K)bTD2Fb]{−1 + [1 − m2(K)2vbTD2Fb/(bTDF)2]1/2}
= bTDF/[m2(K)bTD2Fb]


−1 + 1 −

1
2m2(K)2vbTD2Fb/(bTDF)2


{1 + o(1)}

= −
1
2m2(K)v/(bTDF){1 + o(1)}

where the third equality follows from the Taylor expansion (1 − x)1/2 = 1 −
1
2x + o(x). This implies that (BiasT θ̂)DF(θ) =

−
1
2m2(K)tr[(H + Var θ̂)D2F(θ)]{1 + o(1)}, i.e. Var θ̂ has replaced MSE θ̂ in the inner parenthesis.

For the variance, we again apply Lemma 1, since we note that F̂(θ̂; H) = z,

DF(θ)T (Var θ̂)DF(θ) = {Var F̂(θ̂; H)+ Var F̂(θ; H)+ 2 Cov(F̂(θ̂; H), F̂(θ; H))}{1 + o(1)}

= {Var F̂(θ; H)}{1 + o(1)} = {n−1z(1 − z)− 2n−1m1(KK)T H1/2DF(θ)}{1 + o(1)}

and for the mean squared error,

DF(θ)T (MSE θ̂)DF(θ) = {MSE F̂(θ̂; H)+ MSE F̂(θ; H)+ 2 Cov(F̂(θ̂; H), F̂(θ; H))}{1 + o(1)}

= {MSE F̂(θ; H)}{1 + o(1)}
=


n−1z(1 − z)− 2n−1m1(KK)T H1/2DF(θ)+

1
4m2(K)2tr2(HD2F(θ))


{1 + o(1)}. �

For the proofs of Theorems 5–7, we require the definition of the intermediate quantities Yi = FX (Xi), i = 1, . . . , n, and
F̂Y (z; h) = n−1 n

i=1 Lh(z − Yi).

Proof of Theorem 5. Using the law of total expectation, we have EF̂Ŷ2(z) = E[EF̂Ŷ2(z)|X1] implying that Bias F̂Ŷ2(z) =

EF̂Ŷ2(z) − FY2 = E[EF̂Ŷ2(z)|X1] − FY2 = E[EF̂Ŷ2(z)|X1] − E[F̂Ŷ2(z)|X1] + E[F̂Ŷ2(z)|X1] − FY2 = Bias(EF̂Ŷ2(z)|X1) +

Bias(F̂Ŷ2(z)|X1), thus Bias2F̂Ŷ2(z) = Bias2[EF̂Ŷ2(z)|X1] + Bias2[F̂Ŷ2(z)|X1]. The law of total variance yields Var F̂Ŷ2(z) =

Var [EF̂Ŷ2(z)|X1] + EVar[F̂Ŷ2(z)|X1]. Combining these gives the unconditional MSE as

MSE F̂Ŷ2(z) = Var[EF̂Ŷ2(z)|X1] + EVar[F̂Ŷ2(z)|X1] + Bias2(EF̂Ŷ2(z)|X1)+ EBias2[F̂Ŷ2(z)|X1]

= MSE[EF̂Ŷ2(z)|X1] + E[MSE F̂Ŷ2(z)|X1].

The conditional moments of F̂Ŷ2 given X1 are, from Theorem 1,

E[F̂Ŷ2(z)|X1] =


FŶ2(z)+

1
2m2(L)h2

2F
′′

Ŷ2
(z)


{1 + o(1)}

Var[F̂Ŷ2(z)|X1] = {n−1
2 FŶ2(z)F̄Ŷ2(z)− 2n−1

2 h2m1(LL)F ′

Ŷ2
(z)}{1 + o(1)}
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where FŶ2(z) = F̄X2(
ˆ̄θX1(z)). The first term in the unconditional MSE F̂Ŷ2 is

MSE[E(F̂Ŷ2(z)|X1)] = MSE FŶ2(z){1 + o(1)} = MSE F̄X2(
ˆ̄θX1){1 + o(1)}

= DF̄X2(θ̄X1)
TMSE[ ˆ̄FX1(θ̄X1)]DF̄X2(θ̄X1){1 + o(1)} = MSE[ ˆ̄FX1(θ̄X1)]fX2(θ̄X1)

2/fX1(θ̄X1)
2
{1 + o(1)}

=


n−1
1 z(1 − z)− 2n−1

1 m1(KK)H1/2
1 DFX1(θ̄X1)+

1
4m2(K)2tr2(H1D

2FX1(θ̄X1))

fX2(θ̄X1)

2/fX1(θ̄X1)
2
{1 + o(1)}

using techniques similar to those in the proof of Lemma2. For the second termof the unconditionalMSE F̂Ŷ2 , we first evaluate

that the expected value of FŶ2 is EFŶ2(z) = EF̄X2(
ˆ̄θX1(z)) = F̄X2(θ̄X1(z)){1 + o(1)} = FY2(z){1 + o(1)}. Exchanging the order

of differentiation and expectation, EF ′

Ŷ2
(z) = (∂/∂z)E[FŶ2(z)] = F ′

Y2
(z){1 + o(1)} and so on for higher order derivatives.

Then

EBias2[F̂Ŷ2(z)|X1] =
1
4m2(L)2h4

2E[F ′′

Ŷ2
(z)]2{1 + o(1)} =

1
4m2(L)2h4

2F
′′

Y2(z)
2
{1 + o(1)}

EVar[F̂Ŷ2(z)|X1] = {n−1
2 E[FŶ2(z)(1 − FŶ2(z))] − n−1

2 h2m1(LL)EF ′

Ŷ2
(z)}{1 + o(1)}

= {n−1
2 FY2(z)(1 − FY2(z))− n−1

2 h2m1(LL)F ′

Y2(z)}{1 + o(1)}

and so EMSE[F̂Ŷ2(z)|X1] = {MSE F̂Y2(z)}{1 + o(1)}. Thus MSE F̂Ŷ2(z) can be decomposed into two (conditionally)
independent components

MSE F̂Ŷ2(z) =


[MSE F̂X1(θ̄X1)]fX2(θ̄X1)

2/fX1(θ̄X1)
2

+ n−1
2 FY2(z)(1 − FY2(z))− 2n−1

2 h2m1(LL)F ′

Y2(z)+
1
4m2(L)2h4

2F
′′

Y2(z)
2

{1 + o(1)}.

For univariate data, thisMSE expression reduces towell-known expressions, e.g. Lloyd (1998). Integrating theMSEweobtain
the result. �

Proof of Theorem 6. Integrating the leading terms of MSE F̂X1(x; H1) from Theorem 1 and E[MISE F̂Ŷ2(·; h2)|X1] from
Theorem 5, we have

MISE F̂Ŷ2(·; H1, h2) =

 1

0


n−1
1 z(1 − z)fX2(x)

2/fX1(x)
2
+ n−1

2 FY2(z)(1 − FY2(z))

+O(n−1
1 trH1/2

1 + trH2
1 + n−1

2 h2 + h4
2)


dz

= n−1
1


Rd

F̄X1(x)(1 − F̄X1(x))fX2(x)
2/fX1(x) dx + n−1

2 V1(FY2)

+O(n−1
1 trH1/2

1 + trH2
1 + n−1

2 h2 + h4
2).

For both joint and sequential optimisation, the dominant terms in the minimal MISE remain the two terms not involving
the bandwidths. �

Proof of Theorem 7. For clarity, we omit the 1 and 2 subscripts on X, H, Y , Ŷ , h, and focus on cumulative distributions FX ,
as the results for survival functions F̄X follow analogously. Applying Lemma 1 with q = FY , η = Y = FX (X), and q̂ = F̂Y ,
η̂ = Ŷ (H) = F̂X (X; H), then

MSE [F̂Ŷ (z;H, h)] = {MSE [F̂Y (z; h)] + fY (z)2MSE [Ŷ (H)] + 2fY (z) Cov(F̂Y (z; h), Ŷ (H))}{1 + o(1)}. (A.1)

The first term MSE [F̂Y (z; h)] follows directly from Theorem 1 as

MSE [F̂Y (z; h)] =


n−1FY (z)(1 − FY (z))− 2n−1hm1(LL)fY (z)+

1
4m2(L)2h4f ′

Y (z)
2

{1 + o(1)}. (A.2)

For the second term in Eq. (A.1), by (A6), we assume that X does not coincide with any of X1, . . . ,Xn, so EŶ (H) = EF̂X (X)
= E[KH(X1 − X2)]. Expanding the right hand side using similar techniques to those in the proof of Theorem 1, we obtain

E[KH(X1 − X2)] =


R2d

KH(x − y)fX (x)fX (y) dxdy =


R2d

K(w)FX (y − H1/2w)fX (y) dwdy

=


Rd


FX (y)+

1
2m2(K)tr(HD2FX (y))


fX (y){1 + o(1)} dy

= EY +
1
2m2(K)


Rd


tr(HD2FX (y))


fX (y){1 + o(1)} dy = µY {1 + o(1)}
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using that D2F(x) = DfX (x){1 + o(1)} and


Rd DfX (y)fX (y) dy = 0. Likewise, the variance Var Ŷ (H) = n−1
[VarKH(X1 −

X2)]{1 + o(1)}, of which the remaining expression to evaluate is

E[KH(X1 − X2)
2
] =


R2d

KH(x − y)2fX (x)fX (y) dxdy =


R2d

2K(w)K(w)FX (y − H1/2w)fX (y) dwdy

=


Rd


FX (y)− m1(KK)TH1/2DFX (y)


fX (y){1 + o(1)} dy

= EY − ψX,0m1(KK)TH1/21d{1 + o(1)} dy

that is, Var Ŷ (H) =

n−1µY (1 − µY )− n−1ψX,0m1(KK)TH1/21d


{1 + o(1)}. Thus

MSE [Ŷ (H)] =


n−1µY (1 − µY )− n−1ψX,0m1(KK)TH1/21d


{1 + o(1)}. (A.3)

For the covariance term in Eq. (A.1), Cov(F̂Y (z; h), Ŷ (H)), we require

E[F̂Y (z; h)Ŷ (H)] = n−2E
 n
i,j=1

Lh(z − Yj)KH(X − Xi)


= n−1E[Lh(z − Y2)KH(X1 − X2)] + (1 − n−1)[ELh(z − Y3)][EKH(X1 − X2)]

where Yℓ = F̄X (X2), ℓ = 2, 3, i.e.

Cov(F̂Y (z; h), Ŷ (H)) = n−1E[Lh(z − Y2)KH(X1 − X2)] − n−1E[F̂Y (z; h)]E[Ŷ (H)]
= n−1E[Lh(z − Y2)KH(X1 − X2)] − n−1µY FY (z)+ O(n−1(h2

+ trH)).

The remaining unevaluated term is

E[Lh(z − Y2)KH(X1 − X2)] =


R2d

Lh(z − FX (x))KH(x − y)fX (x)fX (y) dxdy

=


R2d

Lh(z − FX (x))K(w)fX (x)FX (x − H1/2w) dwdx

=


Rd

Lh(z − FX (x))fX (x)FX (x) dx + O(trH).

Since FX and Kh are both monotonic distribution functions, there exists a bandwidth matrix H∗ of the same asymptotic
order as H such that Lh(z − FX (x)) = KH∗(y − x) for z = FX (y). Thus

Rd
Lh(z − FX (x))fX (x)FX (x) dx

=


Rd

KH∗(y − x)fX (x)FX (x) dx = KH∗(y − x) 12FX (x)
2
x=−∞

x=∞

+


Rd

KH∗(y − x) 12FX (x)
2 dx

=
1
2


Rd

K(w)FX (y − H∗1/2w)2 dw =
1
2FX (y)

2
+ O(trH∗) =

1
2 z

2
+ O(trH∗)

and

Cov(F̂Y (z; h), Ŷ (H)) = n−1

1
2 z

2
− (EY )FY (z)


+ O(n−1(h2

+ trH)). (A.4)

The remainder terms of order n−1(h2
+ trH) can be neglected as they are asymptotically dominated by the order n−1trH1/2

terms in the variance in Eq. (A.3). Combining Eqs. (A.2)–(A.4) gives the desired MSE result. Upon integration,

MISE [F̂Ŷ (·; H, h)] =

 1

0


n−1FY1(z)(1 − FY (z))+ fY (z)2µY (1 − µY )+ z2 − 2µY FY (z)


− 2n−1hm1(LL)fY (z)+

1
4m2(L)2h4f ′

Y (z)
2
− n−1ψX,0m1(KK)TH1/21d


{1 + o(1)} dz,

and the AMISE result follows since ψY ,0 =
 1
0 f ′

Y (z)
2 dz, ψY ,2 =

 1
0 f ′′

Y (z)fY (z) dz. �
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