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Motivated by the needs of scientists using flow cytometry, we study the problem of estimating the
region where two multivariate samples differ in density. We call this problem highest density differ-
ence region estimation and recognise it as a two-sample analogue of highest density region or excess
set estimation. Flow cytometry samples are typically in the order of 10 000 and 100 000 and with
dimension ranging from about 3 to 20. The industry standard for the problem being studied is called
Frequency Difference Gating, due to Roederer and Hardy (2001). After couching the problem in a
formal statistical framework we devise an alternative estimator that draws upon recent statistical
developments such as patient rule induction methods. Improved performance is illustrated in
simulations. While motivated by flow cytometry, the methodology is suitable for general multivariate
random samples where density difference regions are of interest.
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1 Introduction

Flow cytometry is a high-throughput technique by which multiple physical characteristics of single
cells or other particles are simultaneously measured as they pass through a laser beam in a fluid
stream (Shapiro, 2003). Its use in both basic and clinical research is experiencing rapid growth.
A typical flow cytometry experiment produces several large multivariate samples; typically of
dimension between 3 and 20. An example of flow cytometric data is shown in Fig. 1 (source:
Roederer et al., 2001b). Pairwise scatterplots for the CD3, CD8 and CD4 antigen levels of 1000
lymphocyte cells are shown for a human immunodeficiency negative (HIV�) patient and HIV
positive (HIV1). A question of interest is which are the regions in three-dimensional space where
the difference of the densities of the two underlying populations is high? Roederer and Hardy (2001)
is at least one paper in the flow cytometry literature concerned with this question. In their
introduction they list biomedical reasons for wanting to find regions of high differing density.
Examples include ‘‘the analysis of phenotypic differences between subsets may elucidate differ-
entiation pathways within a lineage’’ and ‘‘comparison of cells derived from different animals or
people in order to identify cell populations that may correlate with clinically-relevant differences’’.
In this article we critique the approach of Roederer and Hardy (2001), known as Frequency
Difference Gating (FDG), and explore improvements based on recent developments in Statistics.
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While driven by flow cytometric research, the resulting methodology is applicable to general settings
involving large multivariate samples.

The above-mentioned question can be stated formally as estimation of the highest density
difference region (HDDR) based on random samples from two multivariate distributions. This is
made mathematically precise in Section 2. Pinpointing where two samples have differing density is
an old problem in exploratory data analysis. An example is Tukey’s hanging rootogram (e.g. Tukey,
1972) where histogram counts are replaced by their square-roots and compared graphically.
Nevertheless, there is very little formal research on HDDR estimation.

The single sample analogue of HDDR estimation, highest density region estimation, has an
established literature. Contributions include Hartigan (1987), Müller and Sawitzki (1991), Polonik
(1995), Hyndman (1996), Tsybakov (1997), Baı̈llo, Cuesta-Albertos and Cuevas (2001), Cadre
(2006) and Jang (2006). Alternative terminology includes estimation of the density contours, density
level sets and excess mass regions. This literature is, however, mainly concerned with theoretical
results. A number of practical issues in highest density region estimation, such as good data-driven
rules for choosing smoothing parameters, are yet to be resolved.

The FDGmethod for HDDR estimation (Roederer and Hardy, 2001) involves the following two steps:

(i) Partition the space (e.g. R3) into box-shaped sub-regions using one of the samples (labelled
the ‘‘control’’ sample by Roederer and Hardy, 2001).

(ii) Perform chi-squared tests on the resulting counts. Use the test statistics to estimate regions
of differing density.

Roederer and Hardy (2001) achieve (i) via an algorithm called Probability Binning (Roederer
et al., 2001a, b) – a recursive binary partitioning strategy similar to that used by Classification and
Regression Trees (CART) (Breiman et al., 1984). However, CART is sometimes criticised for its
‘‘impatience’’ – committing to splits from the start of the procedure and fragmenting the data too
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Figure 1 Scatter plot matrices for HIV1 (left) and HIV� (right) patients.
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quickly. The Patient Rule Induction Method (PRIM) of Friedman and Fisher (1999) has been
proposed as a remedy – being a more ‘‘patient’’ partitioning algorithm that allows boxes to be
compressed and expanded as the procedure progresses. We modify PRIM for the HDDR estima-
tion problem and show it to give improved performance over FDG on simulated data.

Baggerly (2001) critiqued the chi-squared methodology of Roederer and Hardy (2001). In par-
ticular, he showed some defects in their distribution theory and provided some remedies. An
additional pitfall in flow cytometry applications is over-sensitivity of the chi-squared tests. This was
pointed out by McLaren, Legler and Brittenham (1994) with the claim ‘‘With such large numbers of
cells, the power of the Pearson w2-test may be so great that small deviations from a hypothesised
model may be detected that are statistically but not practically significant’’. In the case of very large
samples they propose the use of indifference regions in chi-squared testing and label the resultant
procedure a generalised chi-squared test. The test statistics have non-central w2 distributions under
the null hypothesis. Our procedure for HDDR estimation incorporates their advice.

Section 2 sets up the mathematical framework for HDDR estimation, while in Section 3 we
review the FDG solution to the problem. Our PRIM-based approach to HDDR estimation is
described in Section 4. In Section 5 we report on some simulations we carried out to compare
PRIM-based HDDR estimation with FDG. We present a flow cytometry application in Section 6
and our conclusions in Section 7.

2 Highest Density Difference Region Estimation

We begin by formalising the problem addressed by the FDG algorithm of Roederer and Hardy
(2001). Let f1 and f� be two density functions on Rd and, for some 0opo1, let

g � p f þ � ð1� pÞf �

denote the weighted density difference. Hall and Wand (1988) worked with a general weighting
coefficient p in the discrimination context. In the current context there is no compelling reason for
the weights to differ; hence, from now on, we will work with g � ðf þ � f �Þ=2 and call it the density
difference.

Let g1 and g� be the two non-negative functions defined by

gþðxÞ ¼ maxð0; gðxÞÞ and g�ðxÞ ¼ �minð0; gðxÞÞ

so that g5 g1
�g�. For 0rtr1 the t highest positive density difference region is

Rþt � fx 2 Rd : gþðxÞ � gþt g where g
þ
t is the greatest number forwhich

Z
Rþt

gþðxÞ dx � 1� t:

The t highest negative density difference region R�t and corresponding threshold g�t are defined
analogously. The t HDDR is then

Rt � Rþt [ R
�
t :

Figure 2 provides a graphical description of Rt and its components. Note that this definition is
analogous to the highest density region definition used by Hyndman (1996).

Now consider the problem of estimating Rt from random samples

Xþ1 ; . . . ;X
þ
nþ � f þ and X�1 ; . . . ;X

�
n� � f �:

Let R̂
þ

t and R̂
�

t respectively be estimators of Rþt and R�t so that R̂t ¼ R̂
þ

t [ R̂
�

t is an estimator of Rt.
We quantify the error in R̂t via

errðR̂tÞ ¼ mðR̂
þ

t DRþt Þ þ mðR̂
�

t DR�t Þ ð1Þ

for some measure m on Rd , where ADB denotes the symmetric difference between sets A and B. Note
that defining errðR̂tÞ to be simply mðR̂tDRtÞ is problematic since, for example, R̂

þ

t may intersect with
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R�t . There are several options for m. In the single density context, Tsybakov (1997) considers the
Lebesgue and Hausdorff measure. We propose to use the Lebesgue measure weighted by the
average density

mðAÞ ¼
Z
A

1
2
ff þðxÞ þ f �ðxÞg dx: ð2Þ

An obvious advantage of this measure is the ease with which it can be approximated by Monte
Carlo:

mðAÞ ’ N�1
XN
i¼1

IðXi 2 AÞ; ð3Þ

where X1,y,XN is a random sample from the 50:50 mixture of f1 and f�. This feature is useful for
our data-driven tuning parameter choice described in Appendix A.2, as well as for simulation
studies for highest density difference estimation, as described in Section 5.

3 Review of Frequency Difference Gating

The two main steps of FDG (Roederer and Hardy, 2001) are

(i) Use an algorithm called Probability Binning to partition Rd into sub-regions and obtain
counts for those sub-regions.

(ii) Use the chi-squared test statistics to estimate regions of high differing density.

Probability Binning treats one sample as the ‘‘control’’ and the other as the ‘‘test’’. Using the
notation of Section 2 we will take the sample corresponding to f1: Xþ1 ; . . . ;X

þ
nþ to be the control

sample. The first stage of FDG involves dividing Rd into box-shaped regions so that the counts
based on the Xþi ’s are equal among the boxes. For example, if n1 5 100 and there are 20 boxes then
the boxes should be chosen such that each one contains 5 Xþi ’s. The same boxes are used for the f�

sample and the counts for that sample obtained. For a K-box partition FDG leads to a 2�K
contingency table. Figure 3 is a graphical description of FDG for simulated data on R where n1

5 100 and K5 10. Note that the disparities within columns correspond to regions of high density
difference.

For higher dimensional samples, the FDG boxes are generated via recursive binary partitioning.
Starting with the smallest d-dimensional hyper-rectangle, or box, containing the control sample, the

Rτ
+

Rτ

(1 − τ) × (positive area)

(1 − τ) × (negative area)

g = (f+− f ) 2

Figure 2 Graphical description of Rþt and
R�t when g is defined on R.
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procedure splits the original box along the (d�1)-dimensional hyperplane orthogonal to the
dimension that has maximum marginal sample variance. The split point is chosen so that the two
new boxes contain equal number of points. This binary splitting procedure is applied recursively for
L levels to produce a partition of r5 2L boxes. Figure 4 illustrates L5 3 level FDG for some
simulated data in R2.

The second phase of FDG involves forming the 2� r contingency table of counts based on the
control and test samples induced by the partition. Chi-squared tests are then used to determine
regions of significant density difference. Baggerly (2001) derived the theoretical distribution of
the chi-squared statistic arising from Probability Binning and showed that the cut-offs used by
Roederer and Hardy (2001) are overly conservative. He then described appropriate modifications to
the chi-squared testing phase.

Although binary partitioning strategies have enjoyed enormous success in data mining
contexts, especially in terms of interpretability, they have been criticised for being too ‘‘impatient’’
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Figure 3 Graphical description of FDG for uni-
variate data.
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Figure 4 Illustration of FDG in d5 2 dimensions.
In this case L5 3 levels of recursive binary parti-
tioning have been performed to produce 23 5 8
boxes.
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(e.g. Hastie, Tibshirani and Friedman, 2001). Binary partitioning means that the data are frag-
mented quite quickly. Friedman and Fisher (1999) devised the PRIM to redress this problem.
Section 4.1 explains how PRIM can be adapted for HDDR estimation.

Another problem with FDG is over-sensitivity of chi-squared tests for very large samples. This
issue is discussed by Pederson and Johnson (1990) and McLaren et al. (1994) who recommended use
of indifference regions. Details are given in Section 4.2.

4 A Patient Rule Induction Method-Based Algorithm for Highest Density

Difference Region Estimation

We now describe our alternative to FDG for HDDR estimation. It calls upon PRIM to obtain sub-
regions of the space where highest density differences seem plausible. Generalised chi-squared tests
are then used to test for significant density difference. Before laying out the algorithm we briefly
describe its main components.

4.1 Patient rule induction method

The PRIM was developed by Friedman and Fisher (1999) as a method for estimating maxima in
multivariate regression functions based on noisy data. A concise description of PRIM is given in
Section 9.3 of Hastie et al. (2001). The main input into PRIM is a set of regression-type data:
ðX1;Y1Þ; . . . ; ðXn;YnÞ, where Xi 2 Rd and Yi 2 R. The output is a set of boxes in Rd that estimate
regions corresponding to maxima in E(Y|X5 x).

PRIM requires specification of (a) the maximum number of boxes and (b) the minimum box
mean (MBM). The resulting boxes depend heavily on these tuning parameters. However, to date,
little research has been done into data-driven values for their choice.

The R package prim (Duong, 2008) (http://cran.r-project.org) facilitates the prac-
tical use of PRIM.

4.2 Generalised chi-squared tests

Consider the classical r� c contingency table situation where Oij is the observed count in cell (i,j).
The usual chi-squared test on (r�1) (c�1) degrees of freedom applies to both the test for homo-
geneity of r multinomial distributions, each with c categories, and the test for independence of two
factors with r and c levels (e.g. Rice, 1995). The former situation is relevant to our algorithm; hence,
consider testing

H0 : p1j ¼ � � � ¼ prj ; j ¼ 1; . . . ; c versus H1 : notH0 ð4Þ

where pij is the probability of the jth category of the ith multinomial distribution. The Pearson X2

statistic is given by

X2 ¼
Xr
i¼1

Xc
j¼1

ðOij � EijÞ
2=Eij : ð5Þ

Here Eij ¼ Oi�O�j=n is the expected count in cell (i,j) under H0, where n is the total count and, for
example, Oi� �

Pc
j¼1 Oij.

An alternative formulation for (4) is H0:d5 0 versus H1:d40 where

d �
Xr
i¼1

Xc
j¼1

ðpij � p�jÞ
2= p�j
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is the discrepancy between the pij and the p�j �
Pr

i¼1 pij=r. For very large n Pederson and
Johnson (1990) and McLaren et al. (1994) recommend working with the generalised hypothesis
set-up

H0 : d ¼ d0; d040 versus H1 : d4d0

where the interval (0,d0) is an indifference region. According to Drost et al. (1989), the approx-
imation

X2
�

approx:
w2ðr�1Þðc�1Þðnd0Þ underH0 ð6Þ

is good for nZ100, where w2kðnÞ denotes the non-central chi-squared distribution with k degrees of
freedom and non-centrality parameter n. Patnaik (1949) is an early reference for derivation of (6).
Generalised chi-squared tests thus involve setting the indifference parameter d0 and making
inference on the basis of (6).

Now take r5 2 and re-label as follows: pþj � p1j and p�j � p2j. Also let nþj � O1j , n
�
j � O2j,

nþ � O1� and n� � O2�. Then the Pearson X2 statistic (5) can be expressed as

X2 ¼
Xc
j¼1

ðp̂þj � p̂�j Þ
2

p̂þj =n
� þ p̂�j =n

þ
ð7Þ

where p̂þj � nþj =n
þ and p̂�j � n�j =n

�. An approximate generalised chi-squared test for H0 : p
þ
j ¼

p�j ; j ¼ 1; . . . ; c with indifference region (0,d0) involves rejection at level a if

X24w2c�1;1�aðnd0Þ ð8Þ

where w2k;1�aðnÞ denotes the 1�a quantile of the w2kðnÞ distribution. If H0 is rejected then the sub-
hypotheses

H0j :
ðp̂þj � p̂�j Þ

2

p̂þj =n
� þ p̂�j =n

þ
� d0=c; j ¼ 1; . . . ; c ð9Þ

can be tested using w21ðnd0=cÞ as an approximate null distribution.
Moore (1984) asserts that the chi-squared statistic computed with respect to partitions based on

the data is asymptotically equivalent to that with fixed boundaries, provided the data-based par-
tition boundaries converge in probability to the fixed boundaries. This is important for the PRIM-
based algorithm, since it uses the data to perform partitioning.

4.3 Algorithm overview

Our new algorithm for HDDR estimation uses PRIM applied to the ‘‘regression’’ data sets (Xi,Yi)
and (Xi,�Yi) where the Xi’s are the Xþi and X�i data pooled together and the Yi 2 f�1; 1g are
indicators of whether Xi is from the � or 1 sample. The first application of PRIM, using the (Xi,Yi),
produces a partition of Rd , the elements of which are candidates for R̂

þ

t . Similarly, candidates for
R̂
�

t are generated via application of PRIM to the (Xi,�Yi). Figure 5 illustrates PRIM-based par-
titioning on some simulated bivariate data. The PRIM partitions lead to a 2� r contingency table of
counts, where r is the partition size (r5 7 for the partition in Fig. 5). Generalised chi-squared tests
applied to contingency table allow for inferentially sound fine-tuning. Full details of the algorithm
are given in Appendix A.

A thorny problem concerns that of selecting PRIM’s MBM parameter for estimation of a par-
ticular Rt. Even for univariate highest density region estimation based on kernel density estimation
there is scant literature on automatic bandwidth selection. In Appendix A.1 we describe a method
for choosing the MBMs from the data.
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4.4 Approximation of error in highest density difference region estimation

The algorithm summarised in the previous section requires determination of Rt ¼ Rþt [ R
�
t when f1

and f� are multivariate normal mixture densities. The simulations of Section 5 also have this
requirement. We now show how Monte Carlo methods can be used to approximate Rþt . An ana-
logous approach applies to R�t .

Let Z1; . . . ;ZN be a random sample from gþ=
R

Rd gþ. Then, following the argument in Section 3.3
of Hyndman (1996), a consistent estimate of gþt is the tth sample quantile of gþðZ1Þ; . . . ; gþðZNÞ. Since

gþ � jgj ¼ j 1
2
f þ � 1

2
f�j � 1

2
f þ þ 1

2
f �

we can use an accept–reject scheme (e.g. Robert and Casella, 1999) based on samples from the
bounding density 1

2
fþ þ 1

2
f �. This is a normal mixture density whenever f1 and f� are; hence, gen-

eration of the required samples is straightforward.

5 Simulations

We conducted a simulation study to assess the performance of the PRIM-based HDDR estimation
procedure and compare it with FDG. Two different settings were considered, with dimension,
sample sizes and t values as follows:

Setting I : d ¼ 2; n ¼ 1000; t ¼ 0:5
Setting II : d ¼ 5; n ¼ 100 000; t ¼ 0:9:
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Figure 5 Illustration of PRIM-based parti-
tioning. The shaded partition elements in the
lower left region are candidates for estimation of
Rþt ; those in the upper middle region are candi-
dates for estimation of R�t . Grey-level shading is
used to distinguish the partition elements.
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Setting I permits some useful visual insights while Setting II aims to mimic a typical flow cytometry
scenario. For each setting the true f1 and f� densities were taken to be normal mixtures. For Setting
I we took f1 to be
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For Setting II, both densities are of the form

w1Nðm1;�1Þ þ w2Nðm2;�2Þ þ w3Nðm3;�3Þ þ w4Nðm4;�4Þ

where each mk is a 5� 1 vector and each �k is a 5� 5 covariance matrix (1rkr4). We obtained the
normal mixture parameters for f1 and f� by fitting normal mixtures to actual flow cytometry data;
hence, for this application, Setting II has an element of realism with respect to the motivating
application. Table 1 in Appendix B lists these parameters. Figure 6 provides visual displays of the
Setting II data and the flow cytometry data on which it is based. Good agreement between the two is
apparent.

One hundred replications were used in each setting. PRIM estimates of Rt were obtained via the
algorithm described in Appendix A. The FDG estimates required a choice of the level parameter L.
This was achieved by the analogue of the normal mixture pilot approach to choosing MBMs as
described in Appendices A.2 and A.3. In each case we approximated the error measure errðR̂tÞ as
given by (1) and (2). For the Monte Carlo approximation (3) we used N5 1 000 000 throughout the
study.

Figure 7 shows typical PRIM-based and FDG-based estimates of Rþ0:5 and R�0:5 for Setting I. Each
estimate is that which results in the median errðR̂0:5Þ value from the simulations. The PRIM-based
estimator is reasonable, although not outstanding. For dimensions as low as 2 we would expect
better performance from classical density estimation approaches. However, the superiority of PRIM
compared with FDG is apparent. The former has more flexibility in placement of its boxes, while
the latter is tied to those arising from the recursive binary splits.

Figure 8 summarises the results. In both settings the PRIM-based approach is the clear winner.
Wilcoxon tests applied to the ratios are highly significant. The advantage of PRIM is much more
pronounced in the higher-dimensional setting where it typically leads to a twofold to threefold
reduction in the error measure. Both methods used the generalised chi-squared tests of Section 4.2;
hence, the improvement is due to the PRIM partitioning. The Setting II results have much more
relevance, since PRIM is designed for higher-dimensional data situations. For low d it is likely that
more traditional density estimation approaches, such as kernel or k-nearest-neighbour estimators,
will be better suited to the HDDR estimation problem.

6 Flow Cytometry Application

The PRIM-based algorithm was applied to flow cytometry data from a large-scale experiment
involving patients that develop graft-versus-host disease (GvHD). The full data set involves blood
samples of 31 patients and 10 anti-body cocktails, with flow cytometry measurements collected
longitudinally for about 3 months, and is described and analysed by Brinkman et al. (2007).
Brinkman et al. (2007) state that ‘‘It is likely that the outcome of GvHD could be improved if it
were treated as early as possible’’ and ‘‘if the diagnosis of GvHD could be made more definitely,
only those patients who absolutely required steroidsy would be treated’’ and use longitudinal data
analytic methods to identify biomarkers.
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We conducted an investigation into the use of our HDDR estimation procedure for biomarker
identification. One GvHD patient and one control patient were chosen among those that had flow
cytometry analyses of their blood cells exactly 32 days after undergoing blood and marrow transplant.
We focussed on the two six-dimensional samples corresponding to forward-scatter, side-scatter, and
staining of the antibodies CD4-FITC, CD8b-PE, CD3-PerCP and CD8-APC for that particular day.
To reduce skewness, the inverse sinh transformation was applied to all data before processing.

We applied the PRIM-based algorithm, with t set at 0.5, to the two six-dimensional samples described
in the previous paragraph. The positive and negative estimated HDDRs are shown in Figs. 9 and 10.

Figure 6 Pairwise scatterplots of a realisation of the Setting II normal mixture data. The actual
flow cytometry data on which it is based are also shown.
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Before commenting on these two figures it should be noted that they are subject to the limitations
of visualising six-dimensional structure via two-dimensional projections. However, they do give
some insight into the nature of the HDDR estimates. The PRIM-based estimate of R̂

þ

0:5 (Fig. 9)
corresponds to a region in R6 where about one-third of the GvHD patient measurements are present
but almost all the control patient measurements are absent. The dark points indicate inclusion in
this region via the 15 (unique) bivariate views of the data.

The PRIM-based estimate of R̂
�

0:5 is shown in Fig. 10. It contains about 20% of the control
patient data, but none of the GvHD patient data. Overall, the PRIM-based estimates of R̂

þ

0:5 and
R̂
�

0:5 reveal some interesting sub-regions of R6 where the control and GvHD patients differ.
The actual HDDR estimates can be described mathematically via box constraints, even though

we do not have a way of displaying them. We also obtained the PRIM-based HDDR estimates for
other values of t between 0.5 and 1. However, for these data the estimates exhibited little change.

Finally, we present the results of applying FDG to the same data (Figs. 11 and 12). The HDDR
estimates based on FDG are considerably larger than those obtained from the PRIM-based algo-
rithm. The positive FDG-estimated HDDR contains most of the data for the GvHD patient, while
the negative FDG-estimated HDDR contains most of the data for the control patient. In short, the
FDG-estimated HDDRs are not as ‘‘sharp’’ as those obtained from the PRIM-based algorithm.
We conclude that PRIM and FDG can give quite different results for flow cytometry data. The
small simulation study of Section 5 points to PRIM being the better option. Further work in this
direction would be worthwhile.

0.5
+

f+  sample
f   sample

estimate
truth

0.5

0.5
+

0.5

Figure 7 Median performance PRIM-based and FDG-based estimates of Rþ0:5 and R�0:5 for
Setting I of the simulation study.
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7 Concluding Remarks

HDDR estimation is an area with enormous potential in many areas of application, including
marketing, geology (e.g. Friedman and Fisher, 1999) and flow cytometric data analysis (e.g. Roederer
and Hardy, 2001). However, there has been surprisingly little research on the topic. Even the single
sample analogue, highest density region estimation, has a literature that is limited mainly to theo-
retical results of little practical benefit. It is our hope that this paper will be a catalyst for converting
this field into a vibrant application-oriented area of research. We anticipate that the HDDR esti-
mation structure laid out in Section 2 will serve as a foundation for ongoing research on this problem.

In this paper, driven by the needs of flow cytometry research, we have concentrated on moderate-
dimensional settings (roughly 5rdr15). Our PRIM-based algorithm for HDDR estimation is seen to
perform quite soundly and offer big improvements over the FDG approach of Roederer and Hardy
(2001). It is expected that lower-dimensional settings will benefit from non-PRIM approaches such as
kernel and kth-nearest-neighbour density estimation (e.g. Scott, 1992). Connections with recent machine
learning research (e.g. Steinwart, Hush and Scovel, 2005) and general classification methodology (e.g.
Hastie et al., 2001) also await exploration. Finally, data-driven rules for the selection of smoothing and
auxiliary parameters in the highest density and density difference region contexts remain virtually an open
topic. Samworth and Wand (2008) deals with the univariate version of this problem.
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values for FDG versus PRIM-based estimation, together with the 1:1 line. The lower panels are
kernel density estimates of the error ratios (with FDG error on the numerator).
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Appendix A: Algorithmic Details

The inputs to the PRIM-based algorithm for HDDR estimation are:
	 tA(0,1), corresponding to Rþt and R�t . This defines the target HDDR.
	Xþ1 ; . . . ;X

þ
nþ

and X�1 ; . . . ;X
�
n� , two multivariate random samples in Rd , with underlying densities

f1 and f�, respectively.
	 a, the significance level in the generalised chi-squared tests. The default is 0.05.
	 d0, the indifference region parameter for the generalised chi-squared tests. The default is
d0 5 0.052, which corresponds to differences of 5% in both absolute and relative terms.
	 Kmax, the maximum number of boxes. The default is Kmax 5 20.
	MBM1 (t), MBM� (t), the MBMs for estimation of Rþt and R�t , respectively. We will suppose,
for now, that they have been chosen from the data to be dMBM

þ

ðtÞ and dMBM
�

ðtÞ. Appendix
A.1 discusses a data-driven rule for their choice.

Given dMBM
þ

ðtÞ and dMBM
�

ðtÞ, the full algorithm for estimation of Rt is:

(i) Form the ‘‘regression’’ data set (Xi,Yi), 1rirn (n5 n11n�), for input into PRIM. The Xi’s
are the Xþi and X�i data pooled together. The Yi 2 f�1; 1g are indicators of whether Xi is
from the � or 1 sample.

Scatter Plot Matrix

outside positive estimated HDDR inside positive estimated HDDR

Figure 9 PRIM-based (t5 0.5) positive highest difference density region for the GvHD data.
The dark points are those inside the region. A random sample of size 250 from each group has
been taken to aid visual comparison. All data have undergone the inverse sinh transformation
before plotting and processing.
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(ii) Feed the (Xi,Yi) data into PRIM to obtain Kmax (ordered) boxes B1; . . . ;BKmax
in Rd . Use

these boxes to obtain a partition fPþ1 ; . . . ;P
þ
Kþg of Rd as follows: Pþ1 ¼ B1,

Pþk ¼ Bk � [
k�1
j¼1 Bj, 2 � k � Kþ where Kþ ¼ maxfk : aveðY ;Pþk Þ �

dMBM
þ

ðtÞg and
aveðY ;Pþk Þ is the average of the Yi’s in Pþk .

(iii) Repeat Step ii, but with (Xi,�Yi), fed into PRIM to obtain P�1 ; . . . ;P
�
K� , with

K� ¼ maxfk : aveð�Y ;P�k Þ �
dMBM

�

ðtÞg.
(iv) Check that there is no overlap between the Pþk and the P�k (for differing densities this is

unlikely for reasonable choices of dMBM
þ

ðtÞ and dMBM
�

ðtÞ. If there is some overlap then
increase dMBM

þ

ðtÞ and decrease dMBM
�

ðtÞ until the Pþk and the P�k are disjoint. If the
boxes become null then the estimate of Rt is null.

(v) Form the following partition of Rd : Pk ¼ Pþk , 1 � k � Kþ; PKþþk ¼ P�k , 1 � k � K�,
PKþ1 ¼ Rd

� [Kj¼1Pk where K ¼ Kþ þ K�.
(vi) Obtain the counts among the Xþi and X�i samples, respectively, over the partition

P1; . . . ;PKþ1. Combine the counts into a 2� (K11) contingency table.
(vii) Test for an overall difference between f1 and f� via a level a generalised chi-squared test on

the 2� (K11) contingency table with indifference region (0,d0). Details are provided by (7)
and (8) with c set to K11.

(viii) If the hypothesis of no overall difference is rejected then test which columns in the
contingency table contribute significantly to the difference between the two samples.
Details are provided by (9) with c set to K11.

Take R̂
þ

t to be the union of all Pk for which significance is achieved and p̂þk 4p̂�k .

Take R̂
�

t to be the union of all Pk for which significance is achieved and p̂þk 4 p̂�k .

Scatter Plot Matrix

outside negative estimated HDDR inside negative estimated HDDR

Figure 10 PRIM-based (t5 0.5) negative highest difference density region estimate for the
GvHD data. The dark points are those inside the region. A random sample of size 250 from
each group has been taken to aid visual comparison. All data have undergone the inverse sinh
transformation before plotting and processing.
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A.1 Data-driven choice of MBM

(i) Obtain pilot estimates of Rþt and R�t based on fitting normal mixture densities to the Xþi
and X�i . Let these pilot estimates be denoted by Rþt;pilot and R�t;pilot. Details on the normal
mixture fitting are deferred to Appendix A.2.

(ii) Apply PRIM to the (Xi,Yi) with MBM ¼ Y to give a sequence Pþ1 ; . . . ;P
þ

Kþ
0

, with MBMs
aveðY ;Pþg Þ; g ¼ 1; . . . ;Kþ0 .

(iii) Apply PRIM to the (Xi,Yi) Kþ0 times each with MBM equal to aveðY ;Pþg Þ to obtain
estimates R̂

þ

t;g for 1 � g � Kþ0 .

(iv) Take dMBM
þ

ðtÞ to be arg min err
1�g�Kþ

0

ðR̂þt;g; bRþt;pilotÞ.
(v) Repeat Steps ii�iv; but using the (Xi,�Yi) data in PRIM to obtain P�1 ; . . . ;P

�
K�

0
, with

MBMs aveð�Y ;P�g Þ; g ¼ 1; . . . ;K�0 and take dMBM
�

ðtÞ arg min err
1�g�Kþ

0

ðR̂þt;g; bRþt;pilotÞ.

A.2 Details of Normal Mixture Fitting

The inputs to the normal mixture fitting procedure used in A.1 are
A continuous sample in Rd .
kmax: The maximum number of components in the normal mixture. The default is 10.

Scatter Plot Matrix

outside positive estimated HDDR inside positive estimated HDDR

Figure 11 FDG -based positive highest difference density region estimate for the GvHD data.
The dark points are those inside the region. A random sample of size 250 from each group has
been taken to aid visual comparison. All data have undergone the inverse sinh transformation
before plotting and processing.
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(i) For each k ¼ 1; . . . ; kmax and ‘ ¼ 1; . . . ; 20 random starts use k-means clustering to fit k clusters
to the data. Let ni ¼ niðk; ‘Þ be the size of the ith cluster (1 � i � k) and cij ¼ cijðk; ‘Þ be the jth
point in the ith cluster (1 � j � ni; 1 � i � k). Compute the within-cluster variabilities

W‘ðkÞ �
Xk
i¼1

Xni
j¼1

jjcij � ci:jj
2

where ci: ¼
Pni

j¼1 cij=ni and || � || is the Euclidean norm. Obtain the sequenceWð1Þ; . . . ;WðkmaxÞ

where each W(k) is chosen to be smallest among the W‘ðkÞ subject to the restriction that the
sequence is monotonically decreasing. Also set BðkÞ �

Pk
i¼1 jjci� � c��jj

2 with c�� ¼
Pk

i¼1 ci�=k.
(ii) Choose the number of clusters k
 ¼ minfkCH; kKL; kWVg where

kCH ¼ argmax
1�k�kmax

CHðkÞ; kKL ¼ argmax
1�k�kmax

KLðkÞ and kWV ¼ maxfk :WVðkÞ41:2g;

CHðkÞ ¼
BðkÞ=ðk� 1Þ

WðkÞ=ðn� kÞ
; KLðkÞ ¼

DðkÞ

Dðkþ 1Þ
; WVðkÞ ¼

WðkÞ

Wðkþ 1Þ

and DðkÞ ¼ ðk� 1Þ2=dWðk� 1Þ � k2=dWðkÞ. CH(k) is due to Calinski and Harabasz (1974),
KL(k) to Krzanowski and Lai (1985) and WV(k) to Bumgarner (2007). This results in a
partition of the data of size k�.

(iii) Fit a multivariate normal distribution to each of the k� partition sub-sets viamaximum likelihood.
Form a normal mixture density with weights corresponding to the relative cluster sizes.

Scatter Plot Matrix

outside negative estimated HDDR inside negative estimated HDDR

Figure 12 FDG-based negative highest difference density region estimate for the GvHD data.
The dark points are those inside the region. A random sample of size 250 from each group has
been taken to aid visual comparison. All data have undergone the inverse sinh transformation
before plotting and processing.
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Appendix B: Normal Mixture Parameters for Simulation Setting II

Table 1 lists the normal mixture parameters for Setting II of the simulation study described in
Section 5. For a symmetric matrix S, vech(S) is the vector of entries of S on and below the diagonal,
stacked in order from left to right.
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