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PLUG-IN BANDWIDTH MATRICES FOR BIVARIATE
KERNEL DENSITY ESTIMATION
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We consider bandwidth matrix selection for bivariate kernel density estimators. The majority of work in this area has
been directed towards selection of diagonal bandwidth matrices, but full bandwidth matrices can give markedly better
performance for some types of target density. Our methodological contribution has been to develop a new version of
the plug-in selector for full bandwidth matrices. Our approach has the advantage, in comparison to existing full
bandwidth matrix plug-in techniques, that it will always produce a finite bandwidth matrix. Furthermore, it
requires computation of significantly fewer pilot bandwidths. Numerical studies indicate that the performance of
our bandwidth selector is best when implemented with two pilot estimation stages and applied to sphered data. In
this case our methodology performs at least as well as any competing method considered, while being simpler to
implement than its competitors.
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1 INTRODUCTION

Kernel density estimation has become a popular tool for visualizing the distribution of

univariate data [see Ref. 5, for example, for an overview]. Univariate kernel density estima-

tion has received considerable attention in the literature, partly because of its practical utility,

and partly because it provides a simple testing ground for learning about nonparametric

smoothing. Kernel density estimation for multivariate data has received significantly less

attention. The lower level of interest in the multivariate context may be explained, to some

extent, by the difficulties in viewing high dimensional density functions. Scott [4] described

a variety of techniques for visualizing such multivariate functions, but while many of these

visualization devices are ingenious, interpretation of the resulting types of plot requires sig-

nificant experience. For this reason, if no other, the use of high-dimensional density estima-

tion as a tool for exploratory data analysis appears relatively uncommon amongst

practitioners.

Bivariate kernel density estimation sits at an important junction between the univariate and

high-dimensional multivariate cases. From a practical standpoint, bivariate density estimates

have a utility and accessibility that is akin to that of their univariate cousins, largely because
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they can be viewed using familiar perspective (‘wire-frame’) or contour plots. From a

theoretical viewpoint, bivariate density estimation is an excellent setting for understanding

aspects of multivariate kernel smoothing. There are important aspects of bivariate kernel

estimation that have no univariate analogue (such as the orientation of the kernel functions)

yet can be generalized to higher dimensional cases with relatively little effort.

For a bivariate sample X1; . . . ;Xn the kernel density estimate is defined by

f̂f ðx;HÞ ¼ n�1
Xn
i¼1

KHðx� X iÞ

where x ¼ ðx1; x2Þ
T and X i ¼ ðXi1;Xi2Þ

T, i ¼ 1; 2; . . . ; n. Here KðxÞ is the bivariate kernel

(which we assume to be a probability density function); H is the bandwidth matrix which

is symmetric and positive-definite; and KHðxÞ ¼ jHj�1=2KðH�1=2xÞ. The choice of H is

crucially important in determining the performance of f̂f . Bivariate bandwidth selection is

a difficult problem which may be simplified (at the expense of flexibility) by imposing

constraints on H. For example, H may be restricted to the class of diagonal (positive-definite)

matrices, or to the class of (positive) multiples of the identity matrix. The merits of imposing

restrictions on H have been investigated by Wand and Jones [6]. These authors conclude that

choosing a diagonal bandwidth matrix will sometimes be adequate, but that in other cases

there is much to be gained by selecting a full (i.e., unconstrained) bandwidth matrix.

While the use of a full bandwidth matrix requires an additional smoothing parameter (in

comparison to diagonal H), it permits arbitrary orientation of the kernel function. This orien-

tation could be chosen in an automatic fashion by constraining H to be a (positive) multiple

of the sample correlation matrix, but Wand and Jones demonstrated that this is inappropriate,

in general.

A large body of published work now exists on bandwidth selection for univariate kernel

density estimation. See Ref. [2], for example, for a review. Cross-validation, bootstrap and

plug-in methods have proved popular in this context, and all of these technologies

have been transferred into the bivariate (and more generally multivariate) setting. Sain

et al. [3] considered cross-validation and bootstrap methods for bandwidth selection for mul-

tivariate density estimators. However, these authors restricted their attention to estimators

constructed using product kernels (which is essentially equivalent to using a diagonal H).

Wand and Jones [7] looked at plug-in bandwidth selection. These authors showed that it

is impossible to derive an explicit expression for the plug-in estimator of H for general multi-

variate kernel density estimators. Wand and Jones therefore concentrated most of their efforts

on diagonal bandwidth matrices for bivariate density estimation, since explicit plug-in esti-

mates are available in this context, and hence analysis is more straightforward that in the gen-

eral case.

This paper is concerned with plug-in methods for selecting a full bandwidth matrix for

bivariate kernel density estimation. This is a problem of some significance in light of the

conclusions of Wand and Jones [6]. We operate within the general framework developed

in Ref. [7], but our aim is to adapt the work of these authors to improve practical perfor-

mance. Our principal methodological contribution concerns the pilot estimation of a matrix

of functionals of the target density, crucial to the calculation of the plug-in estimates. Wand

and Jones [7] suggested the method be calibrated so as to optimize estimation of this matrix

of functionals on an element by element basis. We note, however, that this approach can

result in an estimate that lacks the positive-definiteness of the target matrix. Even if the

estimated matrix has this property it may be almost singular, which can lead to unstable

bandwidth selection. We prefer to optimize the estimates of all elements of the matrix
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estimate using a single, common tuning parameter. Following this approach allows us to

ensure that the matrix estimate will be positive definite, and also lightens the computational

burden of implementing the plug-in bandwidth matrix selector.

The remainder of the paper is structured as follows. In the next section we discuss optimi-

zation of bandwidth matrices with respect to the mean integrated squared error (MISE) of f̂f .

Following [7] we give an asymptotic version of the MISE, and outline how this can be esti-

mated using plug-in techniques. In Section 3 we turn our attention to pilot estimation in the

plug-in method, and describe a new method for selecting the pilot smoothing parameters. We

incorporate this novel methodology into practical algorithms for plug-in bandwidth matrices

in Section 4. The practical performance of our methodology is compared with existing plug-

in techniques (including those for diagonal H) via numerical studies in Section 5. The results

are encouraging. In Section 6 we draw together the findings in the paper, and suggest some

avenues for further research.

2 OPTIMAL BANDWIDTH MATRICES

In order to measure the performance of f̂f we shall (in common with the great majority of

researchers in this field) use the mean integrated squared error (MISE) criterion,

MISE f̂f ð�;HÞ ¼ EISE f̂f ð�;HÞ ¼ E

ð
R2

½ f̂f ðx;HÞ � f ðxÞ�2 dx:

Here f denotes the target density, from which X1; . . . ;Xn are henceforth assumed to be a

random sample. Our aim in bandwidth selection is to estimate

HMISE ¼ arg min
H2H

MISE f̂f ð�;HÞ;

where H is the space of all symmetric, positive definite 2 � 2 matrices. It is well known that

the optimal bandwidth HMISE does not have a closed form. In order to make progress it is

usual to employ an asymptotic analysis. It can be shown (see [8, Chapter 4] for instance)

that (under conditions to be specified)

MISE f̂f ð�;HÞ ¼ AMISE f̂f ð�;HÞ þ oðn�1jHj�1=2 þ tr2 HÞ ð1Þ

where

AMISE f̂f ð� ;HÞ ¼ n�1jHj�1=2RðKÞ þ
1

4
m2ðKÞ

2
ðvechT HÞW4ðvech HÞ ð2Þ

where RðKÞ ¼
Ð
R2 KðxÞ

2 dx, m2ðKÞI ¼
Ð
R2 xxTKðxÞ dx with m2ðKÞ < 1 and vech is the

vector half operator (see [8, chapter 4]). The W4 matrix is the 3 � 3 matrix given by

W4 ¼

ð
R2

vech½2D2f ðxÞ � dgD2f ðxÞ�vechT ½2D2f ðxÞ � dgD2f ðxÞ� dx

where D2f ðxÞ is the Hessian matrix of f and dgA is matrix A with all of its non-diagonal

elements set to zero. Sufficient conditions for the validity of the expansions defined by
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Eqs. (1) and (2) are that all entries in D2f ðxÞ are square integrable and all entries of H ! 0

and n�1jHj�1=2 ! 0, as n ! 1.

If we introduce some more notation, we can explicitly state an expression for the matrix

W4 in terms of its individual elements. Let r ¼ ðr1; r2Þ where the r1; r2 are non-negative

integers. Let jrj ¼ r1 þ r2, then the rth partial derivative of f can be written as

f ðrÞðxÞ ¼
qjrj

qr1

x1
qr2

x2

f ðxÞ

and the integrated density derivative functional is

cr ¼

ð
R2

f ðrÞðxÞ f ðxÞ dx:

Note that if X has density f then E f ðrÞðX Þ ¼ cr. Also,

ð
R2

f ðrÞðxÞf ðsÞðxÞ dx ¼ ð�1Þjrj
ð
R2

f ðrþsÞðxÞf ðxÞ dx:

This then implies that

W4 ¼

c40 2c31 c22

2c31 4c22 2c13

c22 2c13 c04

24 35: ð3Þ

(Note that the subscript 4 on W relates to the order of the derivatives involved.)

Equations (2) and (3) combine to give a tractable approximation, AMISE, to the MISE.

Plug-in methods of selecting the bandwidth matrix make use of the tractability of AMISE

by seeking to estimate

HAMISE ¼ arg min
H2H

AMISE f̂f ð�;HÞ

rather than HMISE. Of course, the AMISE is a functional of the unknown target density,

through W4. Hence we require pilot estimates of the cr functionals that can be ‘plugged-

in’ to provide an estimate ŴW4. This in turn produces an estimate dAMISEAMISE that can be

numerically minimized to give the plug-in bandwidth matrix, ĤH. We note that this process

is facilitated if H is assumed to be diagonal, since then ĤH can be written down in closed

form (see Ref. 7). Nonetheless, it is far from clear that the simplifications obtained through

using a diagonal bandwidth matrix warrant the loss of flexibility that this restriction of H

entails.
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3 PILOT FUNCTIONAL ESTIMATION

In order to implement plug-in selection of H we require pilot estimates of the integrated den-

sity derivative functionals, cr. If we note that cr ¼ E f ðrÞðX Þ then a natural estimator of cr

(following [7]) is

ĉcrðGÞ ¼ n�1
Xn
i¼1

f̂f ðrÞðX i;GÞ ¼ n�2
Xn
i¼1

Xn
j¼1

K
ðrÞ
G ðX i � X jÞ: ð4Þ

where G is a pilot bandwidth matrix (usually different to H). (This is known as the

leave-in-diagonals estimator as it includes the non-stochastic i ¼ j terms; cf. Ref. 1). An

important aspect of this pilot estimation is the choice of G. The finite sample properties

of cr as a function of G are intractable, but we can again make progress through asymptotic

expansions. It can be shown that the bias of ĉcr can be expressed as

Bias ĉcrðGÞ ¼ n�1K
ðrÞ
G ð0Þ þ

1

2
m2ðKÞ

ð
R2

tr½GD2f ðxÞ� f ðrÞðxÞ dxþ oðtr GÞ

while the variance can be expanded as

Var ĉcrðGÞ ¼ 2n�2c0

ð
R2

K
ðrÞ
G ðxÞ2 dxþ oðn�2tðGÞÞ

þ 4n�1

ð
R2

f ðrÞðxÞ2f ðxÞ dx� c2
r

� �
þ oðn�1Þ:

for some smooth function t. However, the explicit form for t is rather complicated for a gen-

eral G; to find K
ðrÞ
G requires many applications of the chain rule and the resulting expression

quickly becomes unwieldy. We therefore follow the lead of Wand and Jones, and consider

pilot bandwidth matrices of the form G ¼ g2I (where I is the 2 � 2 identity matrix).

While this form of G may appear very restrictive and, moreover, inappropriate for many

data sets, the deficiencies of this approach are perhaps less extreme than might appear at

first sight. In the first place, the data may be pre-scaled so as to improve the applicability

of this form of G. We return to this matter in the next section. Secondly, this choice of G

does not affect convergence rates for the estimates ĉcr.

Setting G ¼ g2I the bias and variance expressions simplify as follows:

Bias ĉcrðgÞ ¼ n�1g�jrj�2K ðrÞð0Þ þ
1

2
g2m2ðKÞ

X2

i¼1

crþ2ei
þ oðg2Þ

where ei is the ith elementary vector (i.e. a vector of length 2 with 1 in the ith position and 0

elsewhere) and

Var ĉcrðgÞ ¼ 2n�2g�2jrj�2c0RðK
ðrÞÞ þ oðn�2g�2jrj�2 þ n�1Þ
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provided that K ðrÞ is square integrable and g ! 0 and n�2g�2jrj�2 ! 0 as n ! 1.

Combining these results gives an asymptotic from for the mean square error (MSE) of ĉcr:

AMSE ĉcrðgÞ ¼ 2n�2g�2jrj�2c0RðK
ðrÞÞ

þ n�1g�jrj�2K ðrÞð0Þ þ
1

2
g2m2ðKÞ

X2

i¼1

crþ2ei

" #2

: ð5Þ

Wand and Jones [7] suggested that for each separate r, one should select a data-driven

estimate of the bandwidth g � gr which minimizes AMSE ĉcr. However, this approach

will produce a matrix estimate ŴW4 which may not be positive-definite. Plugging an estimate

which lacks this property in Eq. (2) will produce an estimated AMISE surface without a finite

global minimum (since it will decrease monotonically in some direction). Alternatively, ŴW4

may be positive definite but almost singular, which can lead to serious numerical instability

when seeking the minimizer of the estimated AMISE. This behaviour in the estimated ŴW4 is

an example of an important aspect of estimation for high-dimensional structures, namely that

MSE optimal estimation of each element of the structure may produce clearly sub-optimal

estimates (in many senses) of the structure as a whole.

Our preferred approach is to employ a common value of g for estimation of all elements of

W4. If K is multivariate normal (as we shall assume henceforth) then this is bound to produce

a positive-definite estimate ŴW4. To see this, note first that W4 is positive-definite for any

(continuous) target density f. It is easy to show that ŴW4 is the W4 matrix corresponding to

f ¼ f̂f ð�; 2�1g2IÞ under the aforementioned condition on K, and hence the matrix estimate

has the required property. We note that our approach has the added advantage of parsimony,

since we need select only a single g rather than separate pilot bandwidths for each possible r.

It remains to describe a methodology for selecting a common g. We propose to estimate the

bandwidth that minimizes the sum of AMSE (SAMSE) for ŵwr; that is

g4;SAMSE ¼ arg min
g>0

SAMSE ŴW4

where

SAMSE ŴW4 � SAMSE4ðgÞ ¼
X
r:jrj¼4

AMSE ĉcrðgÞ: ð6Þ

It is clear from Eqs. (5) and (6) that g4;SAMSE will depend on the functionals crþ2ei
for

jrj ¼ 4. These functionals are elements of W6, and hence pilot estimation of this matrix

will be necessary in order to derive a data-driven version of g4;SAMSE. For this second

stage of pilot estimation we could employ the bandwidth g6;SAMSE; i.e. the minimizer of

SAMSE ŴW6. Generalizing, we will be interested in the SAMSE optimal pilot bandwidth

gj;SAMSE for j ¼ jrj ¼ 4; 6; 8; . . . . Fortunately gj;SAMSE is available in closed form, as we

now show.

We have, from Eq. (5),

SAMSEjðgÞ ¼
X
r:jrj¼j

AMSE ĉcrðgÞ

¼ 2n�2g�2j�2A1 þ n�2g�2j�4A2 þ n�1g�jA3 þ
1

4
g4A4
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where

A1 ¼
X
r:jrj¼j

RðK ðrÞÞ;

A2 ¼
X
r:jrj¼j

K ðrÞð0Þ2;

A3 ¼ m2ðKÞ
X
r:jrj¼j

K ðrÞð0Þ
X2

i¼1

crþ2ei

 !
;

A4 ¼ m2ðKÞ
2
X
r:jrj¼j

X2

i¼1

crþ2ei

 !2

:

Note that A1, A2 and A4 are positive by construction. Furthermore, A3 < 0 under our assump-

tion that K is multivariate normal. To see this, note that when all elements of r are even then

K ðrÞð0Þ and crþ2ei
are of opposite sign; and when at least one of these elements is odd then

K ðrÞð0Þ ¼ 0. Now, the SAMSE expression can be simplified as the first term is Oðn�2g�2j�2Þ

and the second term is Oðn�2g�2j�4Þ, which means the latter always dominates the former. If

we remove the first term (which is the asymptotic variance) we are left with

SAMSEjðgÞ ¼ n�2g�2j�4A2 þ n�1g�jA3 þ
1

4
g4A4: ð7Þ

Then differentiating this with respect to g gives

q
qg

SAMSEjðgÞ ¼ �ð2j þ 4Þn�2g�2j�5A2 � jn�1g�j�1A3 þ g3A4:

Setting this to zero and dividing by �g3, we obtain

ð2j þ 4Þn�2g�2j�8A2 þ jn�1g�j�4A3 � A4 ¼ 0:

This is a quadratic in n�1g�j�4 which can be solved to give the jth order SAMSE-optimal

pilot bandwidth as

gj;SAMSE ¼
ð4j þ 8ÞA2

ð�jA3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2A2

3 þ ð8j þ 16ÞA2A4

p
Þn

" #1=ð jþ4Þ

: ð8Þ

4 PRACTICAL PLUG-IN ALGORITHMS

In the previous section we saw that optimal SAMSE smoothing of ĉcr functionals of order

j ¼ jrj requires pilot estimates of corresponding functionals of order j þ 2. To implement

a practical plug-in methodology it is therefore necessary to forego the full SAMSE approach

at some given maximum order jmax. For functionals of this order we simply employ normal

reference estimates,

ĉcNR
r ¼ ð�1ÞjrjfðrÞ

2Sð0Þ
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where fRðxÞ is the multivariate normal density with zero mean and covariance matrix S
evaluated at x; and S is the covariance matrix of the data. We are now in a position to

give the basic structure of our plug-in algorithm. Note that this algorithm is indexed by

the number of stages, m, at which cr functionals are estimated by kernel methods (as

opposed to normal reference).

4.1 Algorithm for m-Stage Plug-in Bandwidth Matrix Selection

1. Set jmax ¼ 2mþ 4. Obtain normal reference estimates ĉcNR
r for jrj ¼ jmax. Plug these

estimates into the SAMSE-optimal bandwidth gjmax�2;SAMSE.

2. For j ¼ jmax � 2, jmax � 4; . . . ; 6:

(a) Calculate kernel estimates of cr functionals of order j ¼ jrj using plug-in estimate of

gj;SAMSE.

(b) Substitute ĉcr estimates into Eq. (8) to give plug-in estimate of gj�2;SAMSE.

3. Employ g4;SAMSE to produce kernel estimate ŴW4. Plug this estimate into Eq. (2) to givedAMISEAMISE.

4. Numerically minimize dAMISEAMISE to obtain required plug-in bandwidth matrix ĤHAMISE.

This algorithm uses pilot bandwidths of the form G ¼ g2I which will be clearly inappropri-

ate if the dispersion of the data differs markedly between the two coordinate directions.

Therefore the data should be pre-transformed before the algorithm is employed. More

specifically, we propose that the algorithm is applied to transformed data X�
1;X

�
2; . . . ;X

�
n,

where the transformation is either sphering

X� ¼ S�1=2X

where S is the sample covariance matrix of the untransformed data; or scaling

X� ¼ S
�1=2
D X

where SD ¼ diagðs2
1; s

2
2Þ and s2

1; s
2
2 are the diagonal elements of S (i.e. marginal sample

variances). The plug-in bandwidth matrix ĤH�
AMISE for the sphered or scaled data can be back

transformed to the original scale by ĤHAMISE ¼ S1=2ĤH�
AMISES

1=2 or ĤHAMISE ¼ S
1=2
D ĤH�

AMISES
1=2
D ,

as appropriate.

In practice we employ a quasi-Newton (variable metric) method of numerical minimization

at stage 4 of the algorithm. In the simulation study reported in Section 5.1, we did not

encounter any significant computational difficulties using this approach.

5 NUMERICAL STUDIES

This section is split in two parts. The first of these reports on a simulation study used to

compare various plug-in bandwidth matrix selectors, while the second considers density

estimation for a real data set.

5.1 A Simulation Study

Here we seek to compare the performance of our plug-in bandwidth matrix selector to exist-

ing plug-in methodologies. We consider six target densities (labelled A through F), each of
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which is a normal mixture described in Figures 1 and 2. All but density F were included in

the numerical studies in Ref. [6]; they exhibit a range of characteristics that we might wish to

detect using kernel density estimation. From each target density we generated 400 data sets of

size n ¼ 100 and the results are detailed below. (We also generated 400 data sets of size

n ¼ 1000, but the results are similar to those for n ¼ 100 and so have been largely excluded

for the sake of brevity.) For each data set we constructed bivariate kernel density estimates

using multivariate normal K and bandwidth matrix selected using the following methods:

� Wand and Jones’ [7] 2-stage plug-in diagonal bandwidth matrix selector, which we

label D2;

FIGURE 1 Test densities A, B, C and D.
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� Wand and Jones’ [7] 1-stage and 2-stage plug-in full bandwidth matrix selectors, labelled

F1 and F2 respectively;

� Plug-in bandwidth matrix selectors using our 1-stage and 2-stage SAMSE based algorithm,

labelled S1 and S2 respectively.

All but the diagonal bandwidth matrix selector were implemented using both pre-scaling

and pre-sphering of the data. We add an asterisk superscript to the method label to indicate

the latter type of transformation (e.g. F2*).

Before examining the results as a whole, it is important to note that methods F1 and F2

failed to produce plug-in bandwidths for some data sets. This occurred when the estimate

ŴW4 failed to be positive-definite. The failure rate (as a percentage) is classified by target

density and sample size in Tables I and II. A number of aspects of these results deserve par-

ticular note. First, the failure rates of both F1 and F2 are sufficiently large (for certain target

densities) that they cannot be ignored from the viewpoint of the practical user. Secondly, the

failures occurred for the densities which are not oriented in parallel to the coordinate axes.

Thirdly, the failure rates do not appear to diminish with the larger sample size. Wand and

Jones’ [7] full bandwidth matrix selector did not encounter such problems when applied

FIGURE 2 Test densities E and F.

TABLE I Percentage Failure Rate for F1 Bandwidth Matrix Selector.

Target density

n A B C D E F

100 0.00 0.00 0.00 0.50 0.50 6.75
1000 0.00 0.00 0.00 2.75 0.00 5.25
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to sphered data. For every data set the matrix estimate ŴW4 was positive definite for both F1�

and F2�. While it remains theoretically possible for either of these methods to fail, this seems

likely only when the structure of the target density is very intricate, for example, when f is

composed of several components with long, thin elliptical contours at a variety of orienta-

tions to the coordinate axes.

The integrated squared error was computed for each (successfully) estimated density.

(Note that this is available in closed form because each f is a normal mixture and K is normal;

see Ref. 6). The efficacy of each methodology is compared using box plots of log(ISE) in

Figures 3 and 4.

A striking aspect of the results is that relative performance depends strongly on target

density shape. For densities A and B all methods considered produce very comparable results.

In particular, D2 is no worse than the more complex full bandwidth matrix selectors in these

cases. The picture is somewhat similar for target density E, although the two-stage full band-

width matrix selectors have a small advantage over alternative methods. For target density C,

TABLE II Percentage Failure Rate for F2 Bandwidth Matrix Selector.

Target density

n A B C D E F

100 0.00 0.00 0.00 1.75 0.25 4.75
1000 0.00 0.00 0.00 4.75 0.00 3.25

FIGURE 3 Box plots of log(ISE) for samples of size n ¼ 100 from densities A, B and C.
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one-stage full bandwidth matrix selectors perform rather poorly. The problem is that this

density is so poorly represented by a normal reference distribution, and so the effects of

this poor representation need to be mollified by an additional stage of pilot estimation.

Turning to density D, this provides an excellent example of a situation in which sphering

the data is detrimental (in comparison to simple scaling). This transformation corrupts impor-

tant structure in f, largely because the orientation of the density as a whole is completely at

odds with the orientation of the individual components of the density. (Note that the overall

correlation is �0:58 while the individual mixture components have correlation zero and 0.7.)

Of all the methods based on sphered data, only S2� comes close to competing with methods

using scaled data. Finally, the pattern of results for density F is almost the exact reverse of

that for density D. Here sphering the data proves a positive boon, as might be expected given

the orientation of f to the coordinate axes. We note that D2 does very poorly with this target

density. Naturally the performance of a diagonal matrix bandwidth selector could be hugely

improved by sphering of the data in this case. However, we concur with Wand and Jones [6]

that the implementation of diagonal bandwidth matrix selection with data sphering is not

generally advisable. Indeed, such an approach performs very badly when f has a shape similar

to target density D.

5.2 Density Estimation for Old Faithful Geyser Data

In this section we consider data from the ‘Old Faithful’ geyser in Yellowstone National

Park, USA, as described in Ref. [5] (amongst many others). This data set consists of

FIGURE 4 Box plots of log(ISE) for samples of size n ¼ 100 from densities D, E and F.
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222 observations on duration of eruptions of the geyser, each of which is paired with the

waiting time for the following eruption (both time intervals measured in minutes). The

data set is strongly bimodal with an overall orientation angled away from the coordinate

axes, and so provides a relatively challenging setting for implementation of the bandwidth

matrix selectors. The bandwidth matrix and density estimate for D2 are displayed in

Figure 5. The corresponding results for the full bandwidth matrix selectors applied to scaled

data are similar to D2 and have been omitted for brevity. The results for S2� are also in Figure

5. The other methods employing sphered data are similar to S2� and they have also been

omitted. A major feature of these results is the difference between (i) methods using a diag-

onal bandwidth matrix, or a full bandwidth matrix applied to scaled data, and (ii) methods

using sphered data. In particular, the former group of methods provide density estimates

in which the lower left mode runs almost parallel to the waiting time axis. For the sphered

data methods the orientation of this mode is at a marked angle to this axis. We also note

that the elements of the bandwidth matrices are larger for the sphered data methods than

the scaled data ones, producing smoother estimates.

6 CONCLUSIONS

In this paper we have considered bandwidth matrix selection for bivariate kernel density

estimators. This is an important problem both from a practical and theoretical standpoint.

The majority of work in this area has been directed towards selection of diagonal bandwidth

matrices, but we reiterate Wand and Jones’ [6] viewpoint that full bandwidth matrices can

give markedly better performance for some types of target density. Our methodological

contribution has been to develop a new type of plug-in selector for full bandwidth matrices.

Our methodology has the advantage, in comparison to the full bandwidth matrix techniques

outlined by Wand and Jones [7], that it will always produce a finite bandwidth matrix.

Furthermore, our approach requires computation of significantly fewer pilot bandwidths.

The simulation study in Section 5.1 had two purposes. It provided information as to the

optimal implementation of our technology (i.e. whether to use scaled or sphered data, and

FIGURE 5 ‘Old Faithful’ geyser density estimate using D2 and S2�.
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whether to use one or two stages of pilot estimation) and also compared the performance of

various competing methodologies. Our overall findings were that the two-stage methods are

to be preferred to their one-stage counterparts. Amongst the two-stage methods, D2, F2 and

S2 all performed badly when estimating target density F. Furthermore, F2 failed to produce

finite bandwidth matrices on a significant number of occasions. This suggests that the

optimal implementation of our bandwidth matrix selector involves two pilot stages, and

sphering of the data; i.e. S2�. The principal competitor to S2� is F2�. The performance of

these methods was almost indistinguishable on most target densities, while the advantage

of F2� on density C is offset by the advantage of S2� on density D. However, it should be

recalled that S2� is the simpler method to implement, requiring just two pilot bandwidths

(excluding normal reference bandwidths) in comparison to the twelve required by F2�.

Indeed, S2� is even more parsimonious than D2 in this regard, with the diagonal bandwidth

matrix selector needing seven pilot bandwidths.

We finish by mentioning some possible extensions of our work, and some avenues for

further research into bandwidth selection for bivariate (and multivariate) density estimation.

It is a straightforward exercise to extend our SAMSE technology to higher dimensional

density estimation. We note that the benefits of the SAMSE approach in terms of parsimony

of pilot bandwidth selection will become increasingly great as the dimensionality of the data

increases. Nonetheless, whether the relative lack of flexibility in the SAMSE method will tell

against it in terms of performance at higher dimensions remains to be discovered. On a more

general issue regarding multivariate bandwidth selection, we note that plug-in methods are

the only univariate technique that has been transferred to higher dimensions for full

bandwidth selection. An open research question is whether cross-validation and bootstrap

methods (so far restricted to the case of diagonal bandwidth matrices) can provide an

attractive practical alternative to the plug-in approach in this context.
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