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Abstract—In recent years, ”Big Data” has become a new
ubiquitous term. Big Data is transforming science, engineering,
medicine, health-care, finance, business, and ultimately our
society itself. Learning from Big Data has become a significant
challenge and requires development of new types of algorithms.
Most machine learning algorithms can not easily scale up to
Big Data. MapReduce is a simplified programming model for
processing large datasets in a distributed and parallel manner.
In this paper, we present our work carried in a big data
project! which is dedicated to the insurance sector. This allows
us to validate our method on real-world data for insurance.
We present the complete pipeline or work-flow going from
data collection to visualization, passing by data fusion, data
analysis, clustering, and prediction tasks. The insurance dataset
is enriched with data collected from heterogeneous sources. A
predictive and analysis system is proposed by combining the
clustering result with decision trees. We use the topological
approach, especially the SOM method, for its interest in being
able to cluster and visualize the data at the same time. We
make the source code of our SOM-MapReduce algorithm,
written with Spark using the MapReduce paradigm, publicly
available®.

Keywords-Data fusion, RDF, Semantic, Entity resolution, Big
Data, Map-Reduce, Spark, Data clustering, SOM, Prediction,
Insurance data, Visualization.

I. INTRODUCTION

Many challenges arising from the Big Data fusion include
how to integrate data from multiple and heterogeneous data
sources, how to identify the meaning between entities from
different sources [1], how to handle the inconsistent naming
styles in different data sources, and how to resolve the
conflicting data types for the same entity. The Linked Data
paradigm allows us to describe a recommended best practice
for displaying, sharing and connecting data, information and
knowledge on the Semantic Web using URIs, the RDF model
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of data, and ontologies. RDF is a conceptual description of
information modeling that is implemented in Web resources,
using a variety of syntax notations and data serialization
formats (XML, n-triple, turtle).

In this paper, we consider clustering multi-dimensional
data. Clustering is a key in a variety of areas: machine
learning, data mining, pattern recognition, social network
etc. It is difficult to store and analyze a large volume of data
on a single machine with a sequential algorithm [2]. In such
situations, the MapReduce (MR) programming paradigm is
used to overcome this problem [3]. The MR programming
model was designed to simplify the processing of large files
on a parallel system through user-defined Map and Reduce
functions [4].

A. Applied data science

In a recent work, we have presented a Big Data work-flow
based on the streaming approach, where data are processed
continuously in real time [5]. In this paper, we will use the
batch approach for data processing and clustering. More pre-
cisely, we are concerned with designing clustering algorithm
named Self-Organizing Map (SOM, [6]) using MapReduce.
We use the emerged open-source implementation named
Spark [7]. We design a complete distributed SOM clustering
solution using Spark and MapReduce paradigm. We demon-
strate the utility of SOM-MR as a method for unsupervised
learning to explore insurance Big Data. We make the source
code of our SOM-MR algorithm, written with Spark using
the MapReduce paradigm as well as our project on the
Spark-Notebook platform publicly available*. We present the
complete pipeline or work-flow going from data collection
to visualization, passing by data fusion using RDF, data

3https://www.w3.org/RDF/
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analysis, clustering, and prediction tasks. A predictive and
analysis system is proposed by combining the clustering
result with decision trees.

The remainder of this paper is organized as follows:
Section II summarizes the architecture of our platform. Sec-
tion III is dedicated to related works. Section IV outlines the
data fusion from different heterogeneous sources. Section V
presents our SOM MapReduce using the Spark open source
platform. Section VI provides the experimental evaluation
on both insurance dataset and the comparisons between two
manners to design MapReduce function. Finally, Section VII
concludes this paper.

II. ARCHITECTURE OF THE BIG DATA FRAMEWORK

l BIG DATA PLATFORM
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Figure 1: Big data platform

In this section, we describe the Big data platform devel-
oped from the collection to visualization step, and is depicted
in Fig. 1. The application we targeted is insurance.

1) Data sets. The data in our platform are collected from
heterogeneous sources including proprietary (housing
insurance contracts), and different open data sets such
as the French national institution of statistics INSEE?
that contains information related to census household
and housing surveys (i.e., type of heating, proportions
of housing type in the local area etc.), the ONDRP®
which is a department of the National Institute of Ad-
vanced Studies of Security and Justice, which contains
information related to crime and delinquency (i.e.,
home invasions, average of armed burglaries against
individuals in their homes, etc.), as well as the well
known open data base Dbpedia amongst others. The
data have different format (RDF, CSV, etc.).

2) Data aspiration batch. The data are collected through
a classical ETL as a batch and considered and waved
to the platform, and then transformed in appropriate
format (RDF) and finally stored in HDFS.

Shttp://www.insee.fr/fr/bases-de-donnees/default.asp?page=open-
data/open-data-utilisation.htm
Ohttp://www.inhesj.fr/fr/ondrp
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3) SaaS Configuration. The component is a software
which is a Service that provides a dashboard to help a
user to process a configuration on the data and transfer
the data to be represented into RDF in the platform.

4) RDF serialization and ontologies. In order to provide
a semantic reasoning by inferring new hidden data, all
data are represented in RDF. Consequently, RDF data
are processed in serialized n-triples format subject-
predicate-object. Moreover, the semantic links are
built to connect RDF data of each data source with
the concepts of an OWL ontology. The fusion process
uses those connections to infer semantic relations
(subsumption, equivalence, disjointness, etc.) across
the data-sources and identify duplicates of the same
real world entities (the owl sameAs relationships).

5) Clustering and Analysis The aim of clustering is
to separate the data set (waved from the collection
process in a matrix format) into a small number
of groups where the members within a cluster are
similar to each other, and members from different
clusters are different to each other. Clusters are useful
for data reduction, analyzing and understanding the
deep structure of the data set. Since we are merging
heterogeneous data sets from different sources, cluster-
ing provides an analytically tool to quantify the new
information created by this newly merged data set,
with respect to the individual data sets.

6) Visualization Visualizations are effective in indicating
the directions in which the analysis should proceed as
they can present key aspects of the data set in a single
graphical summary which would be not evident in a
numerical form.

III. RELATED WORK

We categorize the related work as follows.
Big data fusion
Data integration has been much studied in the last decade
in the database community [8], [9]. Moreover, some tools
that have been developed for RDF query evaluation, such
as Jena’ or Sesame®, are not suited to Big Data since they
require the loading of previously established data in memory
before evaluating them. It is then necessary to develop a
SPARQL query execution engine adapted to Big Data with
the help of MapReduce [10]-[13].
Big data clustering
An attractive way to assist the analysts in data exploration
is to base on unsupervised approaches allowing clustering
and mapping high-dimensional data in a low-dimensional
space. The self-organizing maps (SOM) [6] can be used as
a clustering method that addresses these issues. MapReduce
is the most popular programming paradigm suited for data

7https://jena.apache.org/
Shttp://rdf4j.org/



already stored on a distributed file system, which offers data
replication as well as the ability to execute computations
locally on each data node. The work [14] proposed a parallel
and distributed implementation of k-means in MapReduce.
MR-DBSCAN [15] is a scalable MapReduce-based DB-
SCAN algorithm. Many works have been proposed to scale-
up the EM algorithm and the parallel implementation of EM
proposed in [16] is coded in Spark.

IV. BIG DATA FUSION

In this section, based on our work in [17], we present two
aspects when Big Data fusion is processed: the entity reso-
lution approach based on inference mechanisms to manage
the ambiguity of real world entities for linking data at the
semantic and URI levels, and a query evaluation based on
entity resolution results in order to include implicit data into
query results using the MapReduce paradigm to deal with
huge volumes of data.

A. Entity resolution approach

Each data source uses its own OWL ontology (as a
conceptual model) and identifies the resource using internal
URIs (as an entity identification). Therefore, the same enti-
ties may be described using different or equivalent concepts
(semantics) identified by different URIs among different data
sources. The entity resolution rules are applied on the RDF
data using a resolution algorithm. We propose a MapReduce
algorithm that triggers entity resolution rules in a parallel
manner on distributed small pieces of data. The algorithm
reconciles pairs of entity fragments matching a functional
key that appear in the antecedent of the resolution rules.

B. MapReduce based Query evaluation

We present in this section a MapReduce query evaluation
approach to compute a complete query result by including
implicit data. We propose a query rewriting algorithm based
on the MapReduce paradigm in order to enrich a user query
by adding more RDF patterns that explicitly refer to the
implicit data. This is processed in two steps. In the first step,
a query plan composed of MapReduce jobs is generated for
the query. In the second step, the generated query plan is
evaluated in a Hadoop framework to produce the results.
The user query is rewritten using the inference rules, in-
cluding the entity resolution as SameAs relationship rules.
The inference rules are of the form: antecedent = goal.
The list of inference rules contains the RDFS, the OWL
and the axiom rules defined by the user. The inference rules
are applied by a backward reasoning algorithm. For a given
query, the algorithm generates (1) a MapReduce plan by
applying inference rules to enrich query patterns and (2)
the MapReduce jobs. For each query pattern, the algorithm
generates new sub-patterns corresponding to the antecedent
of the rules whose goal matches the pattern.

Finally, the enriched data are now ready to be translated to
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the analysis and clustering component. The enriched data are
transformed in appropriate format (matrix) to the clustering
component.

V. SPARK-MAPREDUCE AND SOM

To handle the huge amount of data, it is necessary to use
distributed architecture.

In the SOM algorithm we identified theses atomic MapRe-
duce parts:

o Assign each observation x; to the best match unit using
expression 1

o(x;) = argmjn [Ix; — w,a||2 (1)

¢ Accumulate denominator and numerator for each cell
ceC
« Update weight vectors w, (eq. 2)

- Y oea KT (0(c, d(xi))x;
C YkeaKT(0(c d(x:)))
A. SOM MapReduce-based method

In the proposed method, map outputs are merged in one
value, so the key of the output is not used. The Map value of
the output is a matrix and a neighborhood vector. The matrix
is constituted by rows of data vectors x; who are themselves
multiplied by the neighborhood factors K7 (6(c, ¢(x;))). All
those neighborhood factors are stored in the neighborhood
vector. So the size of the output matrix is the number
of prototypes multiplied by the size of the data vectors
(k x n). The size of the neighborhood vector is the number
of prototypes. The reduce function just sums all matrices
and all neighborhood vectors together. The new model
matrix is computed by dividing the sum of matrices and the
sum of the neighborhood vectors. We denote H(k x n) as
neighborhood matrix, which elements are defined as follows:
H;; = KT(5(i, 7)) We also consider that H. ; (H; .) denotes
the column j (the row 7) of the matrix H. The Reduce
function accumulates each data vector assigned to each
prototype and counts them. The prototype matrix W is the
accumulation divided by the denominator. Thus Map and
Reduce functions are defined as follows:

2

MapNumerator(x;) M. b(xi) X Xi
MapDenom(x;) = H. 4,
MapNumerator(x;
Reduce() = LxieaMap (xs)
> x,ea MapDenom(x;)

For more details, please refer to [18].

V1. EXPERIMENTAL EVALUATIONS
A. Application for synthetic datasets

We implemented our algorithms https://github.com/
TugdualSarazin/spark-clustering SOM MapReduce in Spark
0.7.3 and we compared them on a amazon EC2 cluster of



24 xlarge computers. Each computer has 4 cores and 15GB
of RAM, so the total capacity of the cluster is of 96 cores
and 360 GB of RAM.

B. Application for insurance field

Classification and regression trees (CART) are a useful
technique for creating easily interpretable decision rules, see
[19]. In the following we present an analysis combining an
unsupervised learning with a supervised method. The SOM-
MR algorithm is used as an unsupervised method while the
regression trees are used to explain the clusters produced by
the SOM-MR approach.

1) Exploratory data analysis of SOM-MR clusters:
The 2012 insurances payouts data consists of a sample
of 2,130,114 contracts enriched with open data from the
INSEE and ONDRP. The SOM-MR clustering was carried
out on these data, resulting in 100 clusters. The goal of is
to construct a decision tree model of these enriched data
in determining the payouts made for water damage (DDE)
claims charge_dde and for the payouts made for fire
damage (INC) claims charge_inc within each of the
SOM-MR clusters.

As charge_inc and charge_dde are continuous
variables, a regression tree analysis is appropriate. For each
of the SOM-MR clusters, a regression tree with the response
variable being charge_inc or charge_dde, and the
covariates being the other variables. For the fire damages
claims, these regressions trees are displayed in Figure 2 in
decreasing order of the total sum of payouts per cluster.
In each tree, the node labels contain two values: inside the
lozenge is the total payouts, and below it is the number
of claims. At each binary split, the left and right branches
indicate the rule applied to the splitting variable. All the
decision trees begin with the decision nbsin_inc < 0.5
which separates all the contracts with/without any damage
claims at the root node. All the contracts without any claims
becomes a terminal node, as they also do not contribute
to the payouts. All the claims are then decomposed with
further decision rules based on the covariates. For example,
if we focus on the SOM-MR NumCluster=9 in the middle
panel in Figure 2, we observe that the terminal node (labeled
internally 55) has a payout total greater than € 180K from
only 8 contracts. A similar analysis can be carried out with
the nbsin_dde decision trees.

2) Analysis of the insurance big data using SOM-MR: To
further analyze clusters, we use the following 3 indicators:
rate of claims, payouts per contract, and loss per contract.

Number_of_claims

Rat laims — 3
ate_of_claims Number_of_contracts ©)

Sum_of_claim_amounts

“

P t latm =
ayout_per_cuatm Number_of_claims
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Loss_per_contract = Rate_of_claims X Payout_per_claim

®)

Regarding these indicators, especially the maximum and
minimum values, the insurance company can focus its analy-
sis on the corresponding clusters. Thus, a model based on the
features of assigned data can be defined. Using this model,
the insurance company can predict the payouts for a new
customer within a cluster and so propose more personalized
insurance contracts for its customers.

3) Supervised learning of SOM-MR clusters: In the previ-
ous section, we examined decision trees for the exploratory
analysis of the SOM-MR clusters. In this section, we ex-
amine decision trees for the prediction of these SOM-MR
cluster labels in a supervised learning context. The response
variable is the SOM-MR cluster label NumCluster, which
is a categorical variable, a classification tree is appropriate.

The categorical department variable dept (94 levels)
causes a combinatorial explosion when used in conjunction
with the categorical response NumCluster (20 levels) in
a decision tree. The dept variable is not well-suited as an
ordinal variable. Longitude and latitude are better adapted
as, say longitude < 2.50, has a geographical meaning.
So dept was replaced by the longitude and latitude of the
prefecture of each department (Longitude, latitude).
We compute three decision trees: one with both the INSEE
and ONDRP variables (Figure 3), one with the INSEE
variables only, and one where the commune level INSEE
variables are replaced by their departmental means in order
to be comparable to the ONDRP variables.

For the decision tree with both added INSEE and ON-
DRP variables in Figure 3, the geographical variables
longitude and latitude are important as dept previ-
ously, though the ONDRP crime variables are more impor-
tant here than the INSEE housing variables. Each leaf node
has a color-coded label which denotes the estimated cluster
label obtained by following this decision tree. For each leaf
node is annotated with the percentage of these contracts
whose original SOM-MR cluster label coincide with the
estimated label and the number of contracts contained in
the node (n).

Removing the ONDRP variables is too drastic in order to
assess the influence of the INSEE variables. The ONDRP
variables are available at the departmental level whereas the
INSEE variables at the commune (INSEE code) level. In
terms of finding groups of similar values, it is more likely
to occur for the more aggregated ONDRP variables than
the lower level INSEE ones. To remedy this, we replace the
commune level INSEE variables with their mean aggregated
at the department level with the suffix _MOYD.

4) Validation of SOM-MR clusters: A comparison of the
distributions of the summary statistics is easier with the
graphical bar charts in Figure 4. Within each cluster, there
are four bars: the violet are the 2012 data with the true SOM-
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labels of the enriched insurance data: INSEE and ONDRP
variables.

MR clusters, the turquoise is the 2012 data re-classified
using the decision tree, the green is for 2011, and the
orange is for 2010. For 2010, 2011 there are 1.60 and 1.68
million contracts, € 64.1M and €66.7M of fire damages,
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and € 12.2M and €9.11M of water damages. In comparison
for 2012, there are 2.1 million contracts, € 89.4M of fire
and €19.3M of water damages. So we can expect that
the heights of the bars for the former to be around 20%,
20% and 40-50% lower than the latter. Taking these into
account, the match between the number of contracts is good,
especially for the highest bars in clusters 9 and 30. For the
fire damages, cluster 30 is proportionally over-represented
for 2010, 2011, but nonetheless does not exceed the 2012
level. For the water damages, clusters 9, 30 for 2011 appears
to be under-represented and cluster 9 is over-represented for
2010, in comparison to 2012. Overall the SOM-MR cluster
labels from 2012 are validated for clustering the 2010, 2011
data in terms of the number of contracts and fire damages,
but less so for the water damages.

VII. CONCLUSION

In this paper, we have presented a complete data science
work-flow through a real application for insurance field. We
have learned a lot from this experience by showing that Big
Data should be handled by different specialized communi-
ties from the database, knowledge reasoning and machine
learning fields. We have implemented a platform including
a set of models, algorithms, benchmarks for collecting the
heterogeneous data, processing the fusion, the analysis, the
clustering and finally the visualization.

Experimental evaluation demonstrated the effectiveness
and efficiency of the presented Big Data work-flow. The
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utility of the work-flow as a suite of tools for data analytics
has been demonstrated for insurance dataset.

We plan in the future to extend SOM-MR to deal with
binary, categorical, and mixed data, and also to make our
algorithm as autonomous as possible. Also, we envisage
to set up a Lambda Architecture [20] where the SOM-MR
algorithm will serve as an offline layer.
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