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The journey up till now

I 1995–1998 Bachelor, Univ. of Western Australia, Perth
I 1999–2000 Researcher, Australian Bureau of Statistics,

Canberra and Sydney
I 2001–2004 PhD, Univ. of Western Australia, Perth
I 2005 Lecturer, Macquarie Univ., Sydney
I 2005–2007 Post-doc, Univ. of New South Wales, Sydney
I 2007– present Post-doc, Institut Pasteur, Paris
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Research interests

I Kernel smoothing
I Nonparametric statistics
I Statistical software
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Today

I Kernel density estimation (KDE)
I 1st stage of inference (estimation)
I translation is Éstimation de densité à noyau

I Feature significance
I 2nd stage of inference (formal inference)
I translation is ?
I extension of density estimation to significance testing
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Kernel (1)

I NOT cell nucleus
I NOT kernel of an operating system
I NOT kernel/nullspace of a matrix A: {x : Ax = 0}
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Kernel (2)

Kernel K : Rd → R is
I K (x) ≥ 0

I

∫
Rd

K (x) dx = 1

I K is symmetric about 0
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Kernel density estimation

Let X 1, X 2, . . . , X n be a random sample drawn from a common
density f . A kernel density estimate f̂ is

f̂ (x ; H) = n−1
n∑

i=1

KH(x − X i)

where

KH(x − X i) = normal (Gaussian) pdf with mean X i , variance H
H = bandwidth or window width (fenetre)
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Graphical illustration

Scaled kernels KH(x − X i) Kernel density estimate f̂
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Advantages of kernel density estimates

I non-parametric
I easy to construct
I easy to interpret
I suitable for multivariate data
I smooth, no discretisation effects
I no anchor points effects
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Bandwidth selectors

I single most important factor effecting performance of f̂
I ideal bandwidth selector: H0 = argmin

H
AMISE(H)

where AMISE = asymptotic
∫

Rd E[f̂ (x ; H)− f (x)]2 dx

I data-driven selector: Ĥ = argmin
H

ÂMISE(H)
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Relative convergence rates (1)

I a data-driven selector Ĥ = argmin
H

ÂMISE(H) converges to

H0 with rate n−α, α > 0 if

vech(Ĥ− H0) = Op(n−αJ) vech H0

where Op is order in probability, J = matrix of ones, and

vech
[
a b
b c

]
=

a
b
c


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Relative convergence rates (2)

I Ĥ converges to H0 with rate n−α if

MSE(Ĥ) = Var(Ĥ) + Bias(Ĥ) BiasT (Ĥ)

= O(n−2α)(vech H0)(vechT H0)
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Relative convergence rates (3)

Easier(?!) to compute

Bias(Ĥ) = O
(

E
[

∂

∂ vech H
(ÂMISE− AMISE)(H0)

])
Var(Ĥ) = O

(
Var

[
∂

∂ vech H
(ÂMISE− AMISE)(H0)

])
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Table of convergence rates

Convergence rate
Selector d = 1 d > 1
Plug-in 1 (1994) n−4/13 n−4/(d+12)

Plug-in 2 (2003) n−2/7 n−2/(d+6)

CV 1 (1982, 1984) n−1/10 n−min(d ,4)/(2d+8)

CV 2 (1994) n−1/10 n−min(d ,4)/(2d+8)

CV 3 (1992, 2004) n−5/14 n−2/(d+6)
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Software

I ks: R library available on CRAN www.r-project.org

I comprehensive package for kernel density estimation and
bandwidth selection
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Flow cytometry (FACS) data (1)

Data sample KDE
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Flow cytometry (FACS) data (2)

Contour plot Wireframe plot
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Features

I d = 1, 2: mode, valley, saddle-point, ridge etc.
I d > 2: mode
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Modes and modal regions

I mode x∗ of function f : Rd → R
I D f (x∗) = 0, D2 f (x∗) < 0
I D f (x∗) = 0, eigenvalues λ1(x∗), λ2(x∗), . . . , λd (x∗) of

D2 f (x∗) < 0
I modal region M of f

I M = {x : ‖D f (x)‖ ≤ δ,−ε ≤ λj(x) ≤ 0}
I δ, ε ‘small’ positive
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Kernel density derivative estimation

I density (zero-th derivative):

f̂ (x ; H) = n−1
n∑

i=1

KH(x − X i)

I gradient (first derivative):

D̂ f (x ; H) = n−1
n∑

i=1

D KH(x − X i)

I curvature (second derivative):

D̂2 f (x ; H) = n−1
n∑

i=1

D2 KH(x − X i)
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Kernel curvature estimators

I asymptotic distribution:
vech D̂2 f (x ; H)

approx.∼ N(vech D2 f (x),Σ(x))

I local null hypothesis: H0(x) : vech D2 f (x) = 0

I null distribution: vech D̂2 f (x ; H)
approx.∼ N(0,Σ(x))

I test statistic:
W (x) = ‖Σ(x)−1/2 vech D̂2 f (x ; H)‖2 approx.∼ χ2

d(d+1)/2
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Significant curvature regions

I extension of kernel density estimation suited to finding
modal regions

I modal region estimate at significance level α: significant
curvature region M̂ = {x : W (x) ≥ χ2

d(d+1)/2;1−α′}
I α′ is adjusted significance level to account for multiple

hypothesis tests

T. Duong Institut Pasteur

A tour of kernel smoothing



Introduction Kernel density estimation Bandwidth selection Applications of KDE Feature significance Conclusion

Software

I feature: R library available on CRAN

T. Duong Institut Pasteur

A tour of kernel smoothing



Introduction Kernel density estimation Bandwidth selection Applications of KDE Feature significance Conclusion

Flow cytometry (FACS) data (3)

Density estimate Modal regions estimates

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

T. Duong Institut Pasteur

A tour of kernel smoothing



Introduction Kernel density estimation Bandwidth selection Applications of KDE Feature significance Conclusion

T. Duong Institut Pasteur

A tour of kernel smoothing



Introduction Kernel density estimation Bandwidth selection Applications of KDE Feature significance Conclusion

Summary

I Multivariate kernel density estimators
I theoretical development of optimal bandwidth selectors
I software implementation

I Feature significance
I some theoretical development of multivariate modal region

estimation
I software implementation
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Future directions

I Comparing two kernel density estimators
I Optimal bandwidth selection for kernel density derivative

estimators
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