2-d locus maps

Pairwise distances

3-d reconstruction

イロト (目) (ヨ) (ヨ) (ヨ) () ()

Conclusion 00

Statistical reconstruction of yeast nuclear organisation

Tarn Duong

G5 Computational Imaging and Modelling (Christophe Zimmer)

Cell biology and Infection Department day 16 October 2008

ntrod	uction	

2-d locus maps

Pairwise distances

3-d reconstruction

Conclusion

Introduction

- Nuclear organisation = spatial organisation of genome inside nucleus
- Important for nuclear function: transcription, DNA repair and replication

2-d locus maps

Pairwise distances

3-d reconstruction

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Introduction

- Nuclear organisation = spatial organisation of genome inside nucleus
- Important for nuclear function: transcription, DNA repair and replication
- PTR 218 'Functional analysis of gene location and dynamics through quantitative imaging'
 - Labs of U. Nehrbass, B. Dujon and C. Zimmer
- In Saccharomyces cerevisiae yeast, e.g.
 - GAL1 gene moves to nuclear periphery during transcription (Cabal et al., Nature, 2006)
 - Genes near telomeres (chromosomal extremities) at the nuclear periphery
 - tend to be silenced (Hediger et al., Current Biol., 2002)
 - have highest DNA repair efficiency (Thérizols et al., JCB, 2005)
- but detailed nuclear organisation in eukaryotic cells (including yeast) is largely unknown

Introduction	2-d locus maps	Pairwise distances	3-d reconstruction
0	●00000	00	00000

Current state of statistical description of nuclear organisation

- Chromatin has random components of motion (Heun et al., Science, 2001)
 - statistical descriptions required
- binary classification of distance to nuclear periphery
- Iow resolution
- diffraction limit for optical microscopes: $\sim 0.25 \mu m$ laterally, $\sim 0.5 \mu m$ axially

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ref: (Berger et al., Nature Meth., 2008, In press)

Introduction	2-d locus maps	Pairwise distances	3-d reconstruction
0	00000	00	00000

Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Histograms vs kernel estimators

Histogram (same data)

arbitrary placement of bin end points unrealistic jump discontinuities

Introduction	2-d locus maps	Pairwise distances	3-d reconstruction
0	00000	00	00000

Histograms vs kernel estimators

Introduction	2-d locus maps	Pai
0	000000	00

Pairwise distances

3-d reconstruction

(日)

Conclusion

2-d chromosomal locus map

- GAL1 gene under galactose conditions, n = 1702 cells
- Visually similar locus maps
- Both are high resolution (≤ 150 nm)
- but kernel smoother map is more statistically rigorous

 Introduction
 2-d locus maps
 Pairwise distances

 ○
 ○○○○●○
 ○○

3-d reconstruction

イロト (目) (ヨ) (ヨ) (ヨ) () ()

Conclusion 00

Focusing on telomeres (1)

- Existing evidence that 32 yeast telomeres preferentially localise at the nuclear periphery and form 4 to 5 clusters
 - highly non-uniform localisation inside nucleus
- Ideal candidates for investigating spatial location and nuclear function
 - Working hypothesis: proximity of telomeres directly related to their recombination efficiency (Gotta et al., JCB, 1996)

Introduction	2-d locus maps	Pairwise distances
0	000000	00

イロト (目) (ヨ) (ヨ) (ヨ) () ()

Focusing on telomeres (1)

- Existing evidence that 32 yeast telomeres preferentially localise at the nuclear periphery and form 4 to 5 clusters
 - highly non-uniform localisation inside nucleus
- Ideal candidates for investigating spatial location and nuclear function
 - Working hypothesis: proximity of telomeres directly related to their recombination efficiency (Gotta et al., JCB, 1996)
- 2-d locus maps reveal localisation of single locus wrt nuclear landmarks
- but require localisation of telomeres wrt each other

2-d locus maps

Pairwise distances

3-d reconstruction

Conclusion 00

Focusing on telomeres (2)

2-d locus maps

Pairwise distances

3-d reconstruction

Conclusion

Focusing on telomeres (2)

Caveat: Overlapping 2-d maps does NOT imply colocalisation

2-d locus maps

Pairwise distances

3-d reconstruction

Conclusion 00

Telomere-telomere pairwise distances (1)

- Distance between two telomeres
- Nuclear landmarks unable to be tagged concurrently (only 2 colours available)
- NB: different experiments to those for chromosomal loci

イロト (目) (ヨ) (ヨ) (ヨ) () ()

Introduction	2-d locus maps	Pairwise distances
0	000000	00

Telomere-telomere pairwise distances (2)

2-d locus maps

Pairwise distances

3-d reconstruction

Conclusion

Simple 3-d model (1)

- Limitations of 2-d maps
 - Rotation angle about the central axis (green line) not known
- Assume uniform angles on [0°, 360°]

$$+ Unif[0^{\circ}, 360^{\circ}] \rightarrow$$

2-d locus maps

Pairwise distances

3-d reconstruction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Conclusion 00

Simple 3-d model (2)

- No direct 3-d validation check of uniformity assumption
- Indirect validation via distance between pairs of telomeres
- With extra assumption of statistical independence

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへ()~

Uniform angles NOT satisfied in all cases

Introduction	2-d locus maps	Pairwise distances	3-d reconstruction	Conclus
0	000000	00	00000	00

Data-based reconstruction (synthetic example)

True median locations

Introduction	2-d locus maps	Pairwise distances	3-d reconstruction	Conclus
0	000000	00	00000	00

Data-based reconstruction (synthetic example)

 All six inputs (3 locus maps, 3 distances) are each drawn from different cell populations

- Match pairs of locus maps with corr. pairwise distances
- Simulation from non-parametric distributions

Data-based reconstruction (synthetic example)

2-d locus maps

Pairwise distances

3-d reconstruction

Conclusion 00

Next steps

- Thoroughly test reconstruction algorithm on more simulation settings
- Apply to real telomeres data

Introduction	2-d locus maps	Pairwise distances	3-d reconstruction
0	000000	00	00000

イロト (同) (三) (三) (つ) (つ)

Summary and future directions

Yeast nuclear organisation revealed in more details with:

- 2-d chromosomal kernel locus map
 - high resolution i.e. not limited by microscope diffraction
 - statistically rigorous
- 3-d reconstruction given 2-d locus maps and pairwise distances
 - work in progress
 - ultimate goal to reconstruct 3-d location of complete genome
 - connections to physical models of genome

イロト (同) (三) (三) (つ) (つ)

Acknowledgements

PTR 218

- Unité de Génétique des Levures, Institut Pasteur
 - P. Thérizols, E. Fabre
- Unité de Biologie Cellulaire du Noyau, Institut Pasteur
 - A.B. Berger, G.G. Cabal, F. Feuerbach
- Laboratoire de Biologie Moléculaire des Eucaryotes, CNRS, Université de Toulouse
 - O. Gadal
- Plate-forme d'Imagerie Dynamique, Institut Pasteur
- G5 Imagerie et Modélisation, Institut Pasteur
 - C. Zimmer, M. Lelek