Quantitative statistical analysis of bioloical experimental data

Tarn Duong

Molecular Mechanisms of Intracellular Transport Laboratory (Bruno Goud), Institut Curie, Paris

8 March 2010

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction		
Brief CV		

1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (~ Montpellier 2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction		
Brief CV		

- 1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (~ Montpellier 2)
- 1999–2000 Aust. Bureau of Statistics, Canberra & Sydney, Australia (\sim INSEE)
- 2001–2004 Ph.D. (Statistics), Perth, Univ. West. Australia
- 2005 Lecturer, Macquarie Univ., Sydney (~ Paris 8)
- 2005–2007 Post-doc, Univ. New South Wales, Sydney (~ Paris 6/7)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction		
00		
Brief CV		

- 1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (~ Montpellier 2)
- 1999–2000 Aust. Bureau of Statistics, Canberra & Sydney, Australia (~ INSEE)
- 2001–2004 Ph.D. (Statistics), Perth, Univ. West. Australia
- 2005 Lecturer, Macquarie Univ., Sydney (~ Paris 8)
- 2005–2007 Post-doc, Univ. New South Wales, Sydney (~ Paris 6/7)
- 2007–2009 Post-doc, C. Zimmer Group, Institut Pasteur, Paris
- 2010-present Post-doc, B. Goud Laboratory, Institut Curie, Paris

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Introduction •O		
Brief CV		

- 1994–1998 BSc (Math & Comp Science), Perth, Univ. West. Australia (~ Montpellier 2)
- 1999–2000 Aust. Bureau of Statistics, Canberra & Sydney, Australia (\sim INSEE)
- 2001–2004 Ph.D. (Statistics), Perth, Univ. West. Australia
- 2005 Lecturer, Macquarie Univ., Sydney (~ Paris 8)
- 2005–2007 Post-doc, Univ. New South Wales, Sydney (~ Paris 6/7)
- 2007–2009 Post-doc, C. Zimmer Group, Institut Pasteur, Paris
- 2010-present Post-doc, B. Goud Laboratory, Institut Curie, Paris

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Introduction			
00	000	00	000000

Spatial density (individual towns)

Each dot = 10 000 people

Introduction			
00	000	00	000000

Spatial density (overall population)

Each dot = city \geq 1 000 000 people

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction			
00	000	00	000000

Spatial density (overall population)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

	PhD		
00	000	00	000000

Some philosophy of mathematics

System descriptions fall into two main, complementary categories

Eulerian, particle following

- Builds system behaviour from aggregating individual particle behaviour
- Requires accurate information of all individual particles

Lagrangian, population based

- Focuses on aggregated system behaviour
- Gives less accurate knowledge of individual particles

	PhD		
00	000	00	000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Data smoothing

Converting point clouds to smooth density functions

	PhD		
00	000	00	000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Data smoothing

Converting point clouds to smooth density functions

n = 2002D co-ordinates

Qualitative $X_1, X_2, \ldots X_n$

	PhD		
00	000	00	000000

Data smoothing

Converting point clouds to smooth density functions

Qualitative $X_1, X_2, \ldots X_n$

$$K_{\mathbf{H}}(\mathbf{x}-\mathbf{X}_1),\ldots,K_{\mathbf{H}}(\mathbf{x}-\mathbf{X}_n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

	PhD	
	000	
_		

Data smoothing

Converting point clouds to smooth density functions

Qualitative Quantitative $K_{\mathbf{H}}(\mathbf{x} - \mathbf{X}_1), \dots, K_{\mathbf{H}}(\mathbf{x} - \mathbf{X}_n)$ $\hat{f}_{\mathbf{H}}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n K_{\mathbf{H}}(\mathbf{x} - \mathbf{X}_i)$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Data smoothing

Converting point clouds to smooth density functions

(Schauer, Duong, Bleakley, Bardin, Brito, Bornens & Goud, Nature Meth, revised)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

000 000			PhD	
	000000	00	000	00

(ロ) (同) (三) (三) (三) (三) (○) (○)

Smoothing parameter estimation

- Estimating smoothing parameter matrix H is most important factor
- Target (unknown) optimal smoothing parameter: $\mathbf{H} \stackrel{\text{def}}{=} \operatorname{argmin}_{\mathbf{H}} \operatorname{OPT}(\mathbf{H})$
- Estimate: $\hat{\mathbf{H}} = \operatorname{argmin}_{\mathbf{H}} \widehat{\mathrm{OPT}}(\mathbf{H})$
- Convergence: $\hat{H} \rightarrow H$?

000 000			PhD	
	000000	00	000	00

Smoothing parameter estimation

- Estimating smoothing parameter matrix H is most important factor
- Target (unknown) optimal smoothing parameter: $\mathbf{H} \stackrel{\text{def}}{=} \operatorname{argmin}_{\mathbf{H}} \operatorname{OPT}(\mathbf{H})$
- Estimate: $\hat{\mathbf{H}} = \operatorname{argmin}_{\mathbf{H}} \widehat{\mathrm{OPT}}(\mathbf{H})$
- Convergence: $\hat{\mathbf{H}} \rightarrow \mathbf{H}$ at relative rate n^{α} if we can show that

$$\begin{split} \text{MSE}(\hat{\mathbf{H}}) &\stackrel{\text{def}}{=} \mathbb{E}[\text{vec}(\hat{\mathbf{H}} - \mathbf{H}) \text{vec}(\hat{\mathbf{H}} - \mathbf{H})^T] \\ &= \mathbb{E}[(\partial/\partial \text{vec} \mathbf{H})(\widehat{\text{OPT}} - \text{OPT})(\mathbf{H})] \mathbb{E}[(\partial/\partial \text{vec} \mathbf{H})(\widehat{\text{OPT}} - \text{OPT})(\mathbf{H})]^T \\ &+ \text{Var}[(\partial/\partial \text{vec} \mathbf{H})(\widehat{\text{OPT}} - \text{OPT})(\mathbf{H})] \\ &= O(n^{2\alpha})(\text{vec} \mathbf{H})(\text{vec}^T \mathbf{H}). \end{split}$$

(Duong & Hazelton, *J. Nonparametric Stat.*, 2003; Duong & Hazelton, *J. Multivariate Analysis*, 2005; Duong & Hazelton, *Scandinavian J. Stat.*, 2005)

(日) (日) (日) (日) (日) (日) (日)

		Post-doc 1	
00	000	0	000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Automatic gating for flow cytometry (FACS) data

Schematic for flow cytometer machine

	Post-doc 1	
	•0	

Automatic gating for flow cytometry (FACS) data

How to choose sub-populations of interest for further analysis from \sim 100 000 cells?

n = 146740 (CD3, CD4)

Schematic for flow cytometer machine

2D fluoresence hisotgrams

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

	Post-doc 1	
	•0	

Automatic gating for flow cytometry (FACS) data

How to choose sub-populations of interest for further analysis from $\sim 100\,000$ cells?

n = 146740 (CD3, CD4)

Schematic for flow cytometer machine

2D fluoresence hisotgrams

- Manual gates: rectangular gates chosen subjectively by eye, informed by experience
- Not reproducible (even by same person) ۲
- Rectangular gates do not correspond naturally to sub-populations
- Automatic, data-shaped shaped gates

	Post-doc 1	
	00	

- Sub-population $\stackrel{\text{def}}{=}$ region with high local density $f \stackrel{\text{def}}{=}$ modal region
- Modal region ^{def}={x : D²f(x) is negative definite} where D²f is the Hessian matrix of second order partial derivatives of f

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

	Post-doc 1	
	00	

- Sub-population $\stackrel{\text{def}}{=}$ region with high local density $f \stackrel{\text{def}}{=}$ modal region
- Modal region ^{def}= {x : D²f(x) is negative definite} where D²f is the Hessian matrix of second order partial derivatives of f

・ロット (雪) (日) (日)

• Convert data point cloud to kernel density estimate $\hat{f}_{\mathbf{H}}$

	Post-doc 1	
	00	

- Sub-population $\stackrel{\text{def}}{=}$ region with high local density $f \stackrel{\text{def}}{=}$ modal region
- Modal region ^{def}= {x : D²f(x) is negative definite} where D²f is the Hessian matrix of second order partial derivatives of f

- Convert data point cloud to kernel density estimate \hat{f}_{H}
- Modal region estimate = significant curvature region = $\{x : reject H_0 : ||D^2 \hat{f}_H(x)||^2 = 0 \text{ and } D^2 \hat{f}_H(x) \text{ is positive definite} \}$
- Null distribution of $\|\hat{\Sigma}_{\mathbf{H}}(\mathbf{x})^{-1/2} \operatorname{vec} D^2 \hat{f}_{\mathbf{H}}(\mathbf{x})\|^2$ is approx $\chi^2(4)$ (chi-squared distn with 4 d.f.) (Cowling, Duong, Koch & Wand, 2008, Comp. Stat. Data Analysis)

	Post-doc 1	
	00	

- Sub-population $\stackrel{\text{def}}{=}$ region with high local density $f \stackrel{\text{def}}{=}$ modal region
- Modal region ^{def}= {x : D²f(x) is negative definite} where D²f is the Hessian matrix of second order partial derivatives of f

- Convert data point cloud to kernel density estimate \hat{f}_{H}
- Modal region estimate = significant curvature region = $\{x : reject H_0 : ||D^2 \hat{f}_H(x)||^2 = 0 \text{ and } D^2 \hat{f}_H(x) \text{ is positive definite} \}$
- Null distribution of $\|\hat{\Sigma}_{\mathbf{H}}(\mathbf{x})^{-1/2} \operatorname{vec} D^2 \hat{f}_{\mathbf{H}}(\mathbf{x})\|^2$ is approx $\chi^2(4)$ (chi-squared distn with 4 d.f.) (Cowling, Duong, Koch & Wand, 2008, Comp. Stat. Data Analysis)

	Post-doc 2
	00000

Spatial organisation of genomic DNA inside cell nuclei

What is the relationship between spatial location of genomic loci and their function?

For Saccaromyces cerevisiae yeast

- Polarity axis: Spindle Pole Body (SPB) (MTOC) Nuclear centre - Nucleolar centre
- Single nucleolus mostly excludes genomic DNA
- SPB embedded in nuclear envelope
- Chromosome attached at centromere, centromere attached to SPB via microtubule
- Telomeres (chromosome extremities) preferentially localise at nuclear envelope

Schematic for single chromosome inside yeast nucleus

	Post-doc 2
	00000

Spatial organisation of genomic DNA inside cell nuclei

What is the relationship between spatial location of genomic loci and their function?

For Saccaromyces cerevisiae yeast

- Polarity axis: Spindle Pole Body (SPB) (MTOC) Nuclear centre - Nucleolar centre
- Single nucleolus mostly excludes genomic DNA
- SPB embedded in nuclear envelope
- Chromosome attached at centromere, centromere attached to SPB via microtubule
- Telomeres (chromosome extremities) preferentially localise at nuclear envelope
- GAL1 gene moves to nuclear periphery during transcription (Cabal et al, *Nature*, 2006)
- Genes genomically close to telomeres when localised at nuclear periphery tend to be silenced (Hediger et al, Current Biol, 2002)
- and have highest DNA repair efficiency (Thérizols et al, JCB, 2005)

Schematic for single chromosome inside yeast nucleus

			Post-doc 2
00	000	00	00000

Sub-telomeric foci in yeast

- Rap1 staining of 32 telomeres show approx 2 to 8 dots in vitro
- Spatial proximity of sub-telomeres implies sub-telomeres form foci/clusters
 - fixation shrinks cells thus reducing spatial distances
 - Rap1 binds to sites other than telomeres
 - Not all Rap1 is bound to chromosome
 - Not all Rap1 foci are detected
 - Not all telomeres are bound to Rap1

(Gotta et al, JCB, 1996, Fig. 7)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

			Post-doc 2
00	000	00	000000

Sub-telomeric foci in yeast

- Rap1 staining of 32 telomeres show approx 2 to 8 dots in vitro
- Spatial proximity of sub-telomeres implies sub-telomeres form foci/clusters
 - fixation shrinks cells thus reducing spatial distances
 - Rap1 binds to sites other than telomeres
 - Not all Rap1 is bound to chromosome
 - Not all Rap1 foci are detected
 - Not all telomeres are bound to Rap1

(Gotta et al, JCB, 1996, Fig. 7)

- Ideal: in vivo analysis of 32 telomeres each simultaneously stained in a different colour
- In vivo tagging limited to 2 simultaneous colours (red, green) \rightarrow pairwise distances

			Post-doc 2
00	000	00	000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Re-sampling analysis for sub-telomeric foci

- Pairwise distance data for Tel6R and 20 other telomeres
- Probabilistic composition of sub-telomeric foci

Data

6R2L	6R2R	 6R16L
0.718	1.348	1.780
1.870	1.479	1.480
1.400	1.266	0.709
0.851	1.372	 1.490
1.220	1.852	1.520
0.274	0.620	1.460

	Post-doc 2
	000000

- Pairwise distance data for Tel6R and 20 other telomeres
- Probabilistic composition of sub-telomeric foci

Data

Re-sampled theoretical cell 6R2L 6R2R ... 6R16L

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1.400 1.372 ... 1.520

6R2L	6R2R	6R16L
0.718	1.348	1.780
1.870	1.479	1.480
1.400	1.266	0.709
0.851	1.372	1.490
1.220	1.852	1.520
0.274	0.620	1.460

:

	Post-doc 2
	000000

- Pairwise distance data for Tel6R and 20 other telomeres
- Probabilistic composition of sub-telomeric foci

Re-sampled theoretical cell Data 6R2L 6R2R ... 6R16L 6R2L 6R2R 6R16L 1.400 1.372 ... 1.520 0.718 1.348 1.780 1.870 1.479 1.480 1.400 1.266 0.709 12R 0.851 1.372 1.490 118 1.520 1.220 1.852 0.274 0.620 1.460 13R

15R

	Post-doc 2
	000000

- Pairwise distance data for Tel6R and 20 other telomeres
- Probabilistic composition of sub-telomeric foci

Re-sampled theoretical cell Data 6R2L 6R2R ... 6R16L 6R2L 6R2R 6R16L . . . 0.718 1.348 1.780 0.274 1.348 1.780 1.870 1.479 1.480 1.400 1.266 0.709 0.851 1.372 1.490 1.94 1.220 1.852 1.520 ÌÀR 0.274 0.620 1.460 156 13R 유 현 유 유 운 유 거 길 운 편 <mark>57 147</mark> 유 희 운 슈 편 유 우 의

14R

	Post-doc 2
	000000

- Pairwise distance data for Tel6R and 20 other telomeres
- Probabilistic composition of sub-telomeric foci

• Sub-telomeric foci are transient and dynamic (space and time) (Thérizols, Duong, Dujon, Zimmer & Fabre, *PNAS*, 2010)

		Post-doc 2 000●00
Locus density maps		

● Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis → unable to uniquely specify 3D location of locus

▲□▶▲□▶▲□▶▲□▶ □ のQ@

		Post-doc 2 ○○○●○○
Locus density maps		

 Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis → unable to uniquely specify 3D location of locus

 2D cylindrical projection: radius *R* and polar angle *α* known, but azimuthal angle (angle of rotation about polarity axis) unknown (Berger, Cabal, Fabre, Duong, Buc, Nehrbass, Olivo-Marin, Gadal & Zimmer, *Nature Meth*, 2008)

		Post-doc 2 000●00
Locus density maps		

 Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis → unable to uniquely specify 3D location of locus

 2D cylindrical projection: radius *R* and polar angle *α* known, but azimuthal angle (angle of rotation about polarity axis) unknown (Berger, Cabal, Fabre, Duong, Buc, Nehrbass, Olivo-Marin, Gadal & Zimmer, *Nature Meth*, 2008)

Introduction	PhD	Post-doc 1	Post-doc 2
OO	000	OO	
Locus density maps			

● Nuclear landmarks (SPB, nuclear centre, nucleolar centre) lie on polarity axis → unable to uniquely specify 3D location of locus

 2D cylindrical projection: radius *R* and polar angle *α* known, but azimuthal angle (angle of rotation about polarity axis) unknown (Berger, Cabal, Fabre, Duong, Buc, Nehrbass, Olivo-Marin, Gadal & Zimmer, *Nature Meth*, 2008)

	Post-doc 2
	00000

3D telomere reconstruction (work in progress) (1)

• Due to lack of identifiable rotation angle θ , overlapping locus maps do not imply co-localisation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Use pairwise distance data from telomeric foci experiments

	Post-doc 2
	000000

3D telomere reconstruction (work in progress) (1)

• Due to lack of identifiable rotation angle θ , overlapping locus maps do not imply co-localisation

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Use pairwise distance data from telomeric foci experiments

	Post-doc 2
	000000

3D telomere reconstruction (work in progress) (1)

• Due to lack of identifiable rotation angle θ , overlapping locus maps do not imply co-localisation

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Use pairwise distance data from telomeric foci experiments

	Post-doc 2
	000000

3D telomere reconstruction (work in progress) (2)

• Solve for unkownn angles θ_{6R} , θ_{4R} and θ_{10R}

 $R_{6R}R_{4R}\sin\alpha_{6R}\sin\alpha_{4R}\cos\theta_{6R}\cos\theta_{4R} + R_{6R}R_{4R}\sin\alpha_{6R}\sin\alpha_{4R}\sin\theta_{6R}\sin\theta_{4R}$

 $= \frac{1}{2}(R_{6R}^2 + R_{4R}^2 - D_{6R,4R}^2 - 2R_{6R}R_{4R}\sin\alpha_{6R}\sin\alpha_{4R})$

 $R_{6R}R_{10R}\sin\alpha_{6R}\sin\alpha_{10R}\cos\theta_{6R}\cos\theta_{10R} + R_{6R}R_{10R}\sin\alpha_{6R}\sin\alpha_{10R}\sin\theta_{6R}\sin\theta_{10R}$

$$= \frac{1}{2} (R_{6R}^2 + R_{10R}^2 - D_{6R,10R}^2 - 2R_{6R}R_{10R} \sin \alpha_{6R} \sin \alpha_{10R})$$

 $R_{4R}R_{10R}\sin\alpha_{4R}\sin\alpha_{10R}\cos\theta_{4R}\cos\theta_{10R} + R_{4R}R_{10R}\sin\alpha_{4R}\sin\alpha_{10R}\sin\theta_{4R}\sin\theta_{10R}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$= \frac{1}{2}(R_{4R}^2 + R_{10R}^2 - D_{4R,10R}^2 - 2R_{4R}R_{10R}\sin\alpha_{4R}\sin\alpha_{10R})$$

	Post-doc 2
	000000

3D telomere reconstruction (work in progress) (2)

• Solve for unkownn angles θ_{6R} , θ_{4R} and θ_{10R}

 $R_{6R}R_{4R}\sin\alpha_{6R}\sin\alpha_{4R}\cos\theta_{6R}\cos\theta_{4R} + R_{6R}R_{4R}\sin\alpha_{6R}\sin\alpha_{4R}\sin\theta_{6R}\sin\theta_{4R}$

$$= \frac{1}{2}(R_{6R}^2 + R_{4R}^2 - D_{6R,4R}^2 - 2R_{6R}R_{4R}\sin\alpha_{6R}\sin\alpha_{4R})$$

 $R_{6R}R_{10R}\sin\alpha_{6R}\sin\alpha_{10R}\cos\theta_{6R}\cos\theta_{10R} + R_{6R}R_{10R}\sin\alpha_{6R}\sin\alpha_{10R}\sin\theta_{6R}\sin\theta_{10R}$

$$= \frac{1}{2} (R_{6R}^2 + R_{10R}^2 - D_{6R,10R}^2 - 2R_{6R}R_{10R} \sin \alpha_{6R} \sin \alpha_{10R})$$

 $R_{4R}R_{10R}\sin\alpha_{4R}\sin\alpha_{10R}\cos\theta_{4R}\cos\theta_{10R} + R_{4R}R_{10R}\sin\alpha_{4R}\sin\alpha_{10R}\sin\theta_{4R}\sin\theta_{10R}$

$$= \frac{1}{2}(R_{4R}^2 + R_{10R}^2 - D_{4R,10R}^2 - 2R_{4R}R_{10R}\sin\alpha_{4R}\sin\alpha_{10R})$$

(Duong & Zimmer, in preparation)